New insights on CRISPR/Cas9-based therapy for breast Cancer
Tóm tắt
CRISPR/Cas9 has revolutionized genome-editing techniques in various biological fields including human cancer research. Cancer is a multi-step process that encompasses the accumulation of mutations that result in the hallmark of the malignant state. The goal of cancer research is to identify these mutations and correlate them with the underlying tumorigenic process. Using CRISPR/Cas9 tool, specific mutations responsible for cancer initiation and/or progression could be corrected at least in animal models as a first step towards translational applications. In the present article, we review various novel strategies that employed CRISPR/Cas9 to treat breast cancer in both in vitro and in vivo systems.
Tài liệu tham khảo
Ratan ZA, Son YJ, Haidere MF, Uddin BMM, Yusuf MA, Bin Zaman S, et al. CRISPR-Cas9: a promising genetic engineering approach in cancer research. Therapeutic Advances Med Oncol. 2018;10:1758834018755089.
Katrekar D, Hu M, Mali P. Advances in CRISPR-Cas based genome engineering. Curr Opinion Biomed Eng. 2017;1:78–86. https://doi.org/10.1016/j.cobme.2017.04.001.
Chew WL. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdisciplinary Reviews: Syst Biol Med. 2018;10(1):n/a.
Wang HX, Song Z, Lao YH, Xu X, Gong J, Cheng D, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide. Proc Natl Acad Sci U S A. 2018;115(19):4903–8. https://doi.org/10.1073/pnas.1712963115.
Gao Y, Widschwendter M, Teschendorff AE. DNA methylation patterns in Normal tissue correlate more strongly with breast Cancer status than copy-number variants. EBioMedicine. 2018;31:243–52. https://doi.org/10.1016/j.ebiom.2018.04.025.
DeSantis CE, Ma J, Goding Sauer A, Newman LA, Jemal A. Breast cancer statistics, 2017, racial disparity in mortality by state: breast Cancer statistics, 2017. CA Cancer J Clin. 2017;67(6):439–48. https://doi.org/10.3322/caac.21412.
Vogel VG. 15 - Epidemiology of Breast Cancer. In: Bland KI, Copeland EM, Klimberg VS, Gradishar WJ, editors. The Breast (Fifth Edition): Elsevier; 2018. p. 207–18. e4.
Jones T, Lockhart JS, Mendelsohn-Victor KE, Duquette D, Northouse LL, Duffy SA, et al. Use of Cancer genetics Services in African-American Young Breast Cancer Survivors. Am J Prev Med. 2016;51(4):427–36. https://doi.org/10.1016/j.amepre.2016.03.016.
Banerjee B, Sherwood RI. A CRISPR view of gene regulation. Curr Opin Syst Biol. 2017;1:1–8. https://doi.org/10.1016/j.coisb.2016.12.016.
Zuckermann M, Kawauchi D, Gronych J. Applications of the CRISPR/Cas9 system in murine cancer modeling. Brief Funct Genomics. 2017;16(1):25–33. https://doi.org/10.1093/bfgp/elw021.
Ishino Y, Krupovic M, Forterre P. History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 2018;200(7).
Mojica FJ, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol Microbiol. 1993;9(3):613–21. https://doi.org/10.1111/j.1365-2958.1993.tb01721.x.
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93(3):1156–60. https://doi.org/10.1073/pnas.93.3.1156.
Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 2000;28(17):3361–9. https://doi.org/10.1093/nar/28.17.3361.
Bibikova M, Golic M, Golic KG, Carroll D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 2002;161(3):1169–75.
Jansen R. Embden JDAv, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75. https://doi.org/10.1046/j.1365-2958.2002.02839.x.
Lloyd A, Plaisier CL, Carroll D, Drews GN. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci U S A. 2005;102(6):2232–7. https://doi.org/10.1073/pnas.0409339102.
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. 2005;151(8):2551–61. https://doi.org/10.1099/mic.0.28048-0.
Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biology direct. 2006;1(1):7.
Stan JJB, Jore MM, Lundgren M, Westra ER, Rik JHS, Ambrosius PLS, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891):960–4.
Dupuis M-È, Villion M, Fremaux C, Horvath P, Magadán AH, Romero DA, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. 2010;468(7320):67–71.
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471(7340):602–7. https://doi.org/10.1038/nature09886.
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci. 2012;109(39):E2579–86. https://doi.org/10.1073/pnas.1208507109.
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E, et al. A programmable dual-RNA—guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. https://doi.org/10.1126/science.1225829.
Shalem O, Sanjana NE, Zhang F. High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. 2015;16(5):299–311. https://doi.org/10.1038/nrg3899.
Zetsche B, Gootenberg Jonathan S, Abudayyeh Omar O, Slaymaker Ian M, Makarova Kira S, Essletzbichler P, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71. https://doi.org/10.1016/j.cell.2015.09.038.
Liang P, Xu Y, Zhang X, Ding C, Huang R, Zhang Z, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. 蛋白质与细胞:英文版. 2015;6(5):363–72.
Regan PM, Langford D, Khalili K. Regulation and functional implications of Opioid receptor splicing in Opioid pharmacology and HIV Pathogenesis: OPIOID RECEPTOR SPLICING IN HIV PATHOGENESIS. J Cell Physiol. 2016;231(5):976–85. https://doi.org/10.1002/jcp.25237.
Esvelt K. Gene editing can drive science to openness. Nature. 2016;534(7606):153.
Lee K, Conboy M, Park HM, Jiang F, Kim HJ, Dewitt MA, et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat Biomed Eng. 2017;1(11):889–901. https://doi.org/10.1038/s41551-017-0137-2.
Morales DP, Morgan EN, McAdams M, Chron AB, Shin JE, Zasadzinski JA, et al. Light-Triggered Genome Editing: Cre Recombinase Mediated Gene Editing with Near-Infrared Light. Small. 2018;14(30):e1800543–n/a.
Zhang X, Xu L, Fan R, Gao Q, Song Y, Lyu X, et al. Genetic editing and interrogation with Cpf1 and caged truncated pre-tRNA-like crRNA in mammalian cells. Cell Discov. 2018;4(1).
Chow RD, Kim HR, Chen S. Programmable sequential mutagenesis by inducible Cpf1 crRNA array inversion. Nat Commun. 2018;9(1).
Zhao C, Zhao Y, Zhang J, Lu J, Chen L, Zhang Y, et al. HIT-Cas9: a CRISPR/Cas9 genome editing device under tight and effective drug control. Mol Therap-Nucleic Acids. 2018;13:208–19. https://doi.org/10.1016/j.omtn.2018.08.022.
Ahmad G, Amiji M. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery. Drug Discov Today. 2018;23(3):519–33. https://doi.org/10.1016/j.drudis.2018.01.014.
Du Toit A. What CRISPR memories are made of: Bacterial genetics. Nat Rev Microbiol. 2015;13(4):185.
Raj VS. 29 - Cancer Rehabilitation. In: Cifu DX, Lew HL, editors. Braddom's Rehabilitation Care: A Clinical Handbook: Elsevier; 2018. p. 197–203. e12.
Autier P. Age at cancer diagnosis and interpretation of survival statistics. Lancet Oncol. 2016;17(7):847–8. https://doi.org/10.1016/S1470-2045(16)30048-1.
Yang HT, Jaeger M, Walker A, Wei D, Leiker K, Tao WT. Break breast Cancer addiction by CRISPR/Cas9 genome editing. J Cancer. 2018;9(2):219–31. https://doi.org/10.7150/jca.22554.
Kannan R, Ventura A. The CRISPR revolution and its impact on cancer research. Swiss Med Wkly. 2015;145:w14230.
Sanchez-Rivera FJ, Jacks T. Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer. 2015;15(7):387–95. https://doi.org/10.1038/nrc3950.
Maddalo D, Manchado E, Concepcion CP, Bonetti C, Vidigal JA, Han Y-C, et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system. Nature. 2014;516(7531):423–8. https://doi.org/10.1038/nature13902.
Malina A, Mills JR, Cencic R, Yan Y, Fraser J, Schippers LM, et al. Repurposing CRISPR/Cas9 for in situ functional assays. Genes Dev. 2013;27(23):2602–14. https://doi.org/10.1101/gad.227132.113.
Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, et al. CRISPR therapeutic tools for complex genetic disorders and cancer (review). Int J Oncol. 2018;53(2):443–68. https://doi.org/10.3892/ijo.2018.4434.
Chiou S-H, Winters IP, Wang J, Naranjo S, Dudgeon C, Tamburini FB, et al. Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes Dev. 2015;29(14):1576–85. https://doi.org/10.1101/gad.264861.115.
Chen F, Wang Y, Yuan Y, Zhang W, Ren Z, Jin Y, et al. Generation of B cell-deficient pigs by highly efficient CRISPR/Cas9-mediated gene targeting. J Genet Genom = Yi chuan xue bao. 2015;42(8):437–44.
Antal C, Hudson A, Kang E, Zanca C, Wirth C, Stephenson N, et al. Cancer-associated protein kinase C mutations reveal Kinase's role as tumor suppressor. Cell. 2014;160(3):489–502.
Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, et al. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med. 2015;21(3):256–62. https://doi.org/10.1038/nm.3802.
Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, et al. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science. 2017;358(6360):234.
Lee W, Lee JH, Jun S, Bang D. Selective targeting of KRAS oncogenic alleles by CRISPR/Cas9 inhibits proliferation of cancer cells. Sci Rep. 2018;8(1):11879–7. https://doi.org/10.1038/s41598-018-30205-2.
Kim W, Lee S, Kim HS, Song M, Cha YH, Kim Y-H, et al. Targeting mutant KRAS with CRISPR-Cas9 controls tumor growth. Genome Res. 2018;28(3):374–82. https://doi.org/10.1101/gr.223891.117.
Chen L, Peng M, Li N, Song Q, Yao Y, Xu B, et al. Combined use of EpCAM and FRα enables the high-efficiency capture of circulating tumor cells in non-small cell lung cancer. Scientific Rep. 2018;8(1).
Chen S, Sanjana Neville E, Zheng K, Shalem O, Lee K, Lee H, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. 2015;160(6):1246–60. https://doi.org/10.1016/j.cell.2015.02.038.
Takaku M, Grimm SA, Roberts JD, Chrysovergis K, Bennett BD, Myers P, et al. GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun. 2018;9(1).
Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat Commun. 2018;9(1).
Zhang Z, Christin JR, Wang C, Ge K, Oktay MH, Guo W. Mammary-stem-cell-based somatic mouse models reveal breast Cancer drivers causing cell fate Dysregulation. Cell Rep. 2016;16(12):3146–56. https://doi.org/10.1016/j.celrep.2016.08.048.
Wang Y, Wang Zhigang C, Zhang T, Kwiatkowski N, Abraham Brian J, Lee Tong I, et al. CDK7-dependent transcriptional addiction in triple-negative breast Cancer. Cell. 2015;163(1):174–86. https://doi.org/10.1016/j.cell.2015.08.063.
Ain QU, Chung JY, Kim Y-H. Current and future delivery systems for engineered nucleases: ZFN, TALEN and RGEN. J Control Release. 2015;205:120–7. https://doi.org/10.1016/j.jconrel.2014.12.036.
Gupta RM, Musunuru K. Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 2014;124(10):4154–61. https://doi.org/10.1172/JCI72992.
Xu X, Qi LS. A CRISPR–dCas toolbox for genetic engineering and synthetic biology. J Mol Biol. 2019;431(1):34–47.
Catuogno S, Esposito CL, Ungaro P, de Franciscis V. Nucleic Acid Aptamers Targeting Epigenetic Regulators: An Innovative Therapeutic Option. Pharmaceuticals (Basel, Switzerland). 2018;11(3):79.
Spitale RC, Tsai M-C, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics. 2011;6(5):539–43. https://doi.org/10.4161/epi.6.5.15221.
Farhang N, Brunger JM, Stover JD, Thakore PI, Lawrence B, Guilak F, et al. CRISPR-based Epigenome editing of cytokine receptors for the promotion of cell survival and tissue deposition in inflammatory environments. Tissue Eng A. 2017;23(15–16):738–49. https://doi.org/10.1089/ten.tea.2016.0441.
Qin W, Xiong Y, Chen J, Huang Y, Liu T. DC-CIK cells derived from ovarian cancer patient menstrual blood activate the TNFR1-ASK1-AIP1 pathway to kill autologous ovarian cancer stem cells. J Cell Mol Med. 2018;22(7):3364–76. https://doi.org/10.1111/jcmm.13611.
Xu H, Sun Q, Lu J, Lu L, Luo F, Zhou L, et al. MicroRNA-218 acts by repressing TNFR1-mediated activation of NF-κB, which is involved in MUC5AC hyper-production and inflammation in smoking-induced bronchiolitis of COPD. Toxicol Lett. 2017;280:171–80. https://doi.org/10.1016/j.toxlet.2017.08.079.
Kennedy EM, Kornepati AVR, Goldstein M, Bogerd HP, Poling BC, Whisnant AW, et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease. J Virol. 2014;88(20):11965–72. https://doi.org/10.1128/JVI.01879-14.
Moses C, Garcia-Bloj B, Harvey AR, Blancafort P. Hallmarks of cancer: the CRISPR generation. Eur J Cancer. 2018;93:10–8. https://doi.org/10.1016/j.ejca.2018.01.002.
Wang C, Zou J, Ma X, Wang E, Peng G. Mechanisms and implications of ADAR-mediated RNA editing in cancer. Cancer Lett. 2017;411:27–34. https://doi.org/10.1016/j.canlet.2017.09.036.
Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, et al. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Cell Prolif. 2016;49(4):421–37. https://doi.org/10.1111/cpr.12268.
Advani SM, Advani P, DeSantis SM, Brown D, VonVille HM, Lam M, et al. Clinical, pathological, and molecular characteristics of CpG Island Methylator phenotype in colorectal Cancer: a systematic review and meta-analysis. Transl Oncol. 2018;11(5):1188–201. https://doi.org/10.1016/j.tranon.2018.07.008.
Banerjee S, Ji C, Mayfield JE, Goel A, Xiao J, Dixon JE, et al. Ancient drug curcumin impedes 26S proteasome activity by direct inhibition of dual-specificity tyrosine-regulated kinase 2. Proc Natl Acad Sci U S A. 2018;115(32):8155–60. https://doi.org/10.1073/pnas.1806797115.
Chen L, Zhu G, Johns EM, Yang X, et al. Nat Commun. 2018;9(1).
Guo X, Wang X, Wang Z, Banerjee S, Yang J, Huang L, et al. Site-specific proteasome phosphorylation controls cell proliferation and tumorigenesis. Nat Cell Biol. 2016;18(2):202–12. https://doi.org/10.1038/ncb3289.
Pavlin M, Spinello A, Pennati M, Zaffaroni N, Gobbi S, Bisi A, et al. A Computational Assay of Estrogen Receptor α Antagonists Reveals the Key Common Structural Traits of Drugs Effectively Fighting Refractory Breast Cancers. Scientific Rep. 2018;8(1).
Fang Z, Yi Y, Shi G, Li S, Chen S, Lin Y, et al. Role of Brf1 interaction with ERα, and significance of its overexpression, in human breast cancer. Mol Oncol. 2017;11(12):1752–67. https://doi.org/10.1002/1878-0261.12141.
Van Treuren T, Vishwanatha JK. CRISPR deletion of MIEN1 in breast cancer cells. PLoS One. 2018;13(10):e0204976. https://doi.org/10.1371/journal.pone.0204976.
Annunziato S, Kas SM, Nethe M, Yücel H, Del Bravo J, Pritchard C, et al. Modeling invasive lobular breast carcinoma by CRISPR/Cas9-mediated somatic genome editing of the mammary gland. Genes Dev. 2016;30(12):1470–80. https://doi.org/10.1101/gad.279190.116.
Russ A, Hua AB, Montfort WR, Rahman B, Riaz IB, Khalid MU, et al. Blocking “don't eat me” signal of CD47-SIRPα in hematological malignancies, an in-depth review. Blood Rev. 2018;32(6):480–9. https://doi.org/10.1016/j.blre.2018.04.005.
Fan P, He ZY, Xu T, Phan K, Chen GG, Wei YQ. Exposing cancer with CRISPR-Cas9: from genetic identification to clinical therapy. Transl Cancer Res. 2018;7(3):817–27. https://doi.org/10.21037/tcr.2018.06.16.
Thakore PI, D'Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods. 2015;12(12):1143–9. https://doi.org/10.1038/nmeth.3630.
O'Donnell KA. Advances in functional genetic screening with transposons and CRISPR/Cas9 to illuminate cancer biology. Curr Opin Genet Dev. 2018;49:85–94. https://doi.org/10.1016/j.gde.2018.03.006.
Ward E, Varešlija D, Charmsaz S, Fagan A, Browne AL, Cosgrove N, et al. Epigenome-wide SRC-1–mediated gene silencing represses cellular differentiation in advanced breast Cancer. Clin Cancer Res. 2018;24(15):3692–703. https://doi.org/10.1158/1078-0432.CCR-17-2615.
Kalhor R, Mali P, Church GM, et al. Nat Methods. 2017;14(2):195 U6 - ctx_ver=Z3988–2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummonserialssolutionscom&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rftgenre=article&rftatitle=Rapidly+evolving+homing+CRISPR+barcodes&rftjtitle=Nature+methods&rftau=Kalhor%2C+Reza&rftau=Mali%2C+Prashant&rftau=Church%2C+George+M&rftdate=2017-02-01&rfteissn=1548–7105&rftvolume=14&rftissue=2&rftspage=195&rft_id=info%3Apmid%2F27918539&rftexternalDocID=27918539¶mdict=en-US U7 - Journal Article.
Kozak D, Głowacka-Mrotek I, Nowikiewicz T, Siedlecki Z, Hagner W, Sowa M, et al. Analysis of undesirable Sequelae of sentinel node surgery in breast Cancer patients – a prospective cohort study. Pathol Oncol Res. 2018;24(4):891–7. https://doi.org/10.1007/s12253-017-0306-3.
Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau HT, Forero-Torres A, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN solid tumor study. Breast Cancer Res Treat. 2018;167(3):671–86. https://doi.org/10.1007/s10549-017-4537-5.
Chen Y, Zhang Y. Application of the CRISPR/Cas9 System to Drug Resistance in Breast Cancer. Advanc Sci. 2018;5(6).
Hill AJ, McFaline-Figueroa JL, Starita LM, Gasperini MJ, Matreyek KA, Packer J, et al. On the design of CRISPR-based single-cell molecular screens. Nat Methods. 2018;15(4):271–4. https://doi.org/10.1038/nmeth.4604.
Hegde M, Strand C, Hanna RE, Doench JG. Uncoupling of sgRNAs from their associated barcodes during PCR amplification of combinatorial CRISPR screens. PloS one. 2018;13(5).
McKenna A, Findlay GM, Gagnon JA, Horwitz MS, Schier AF, Shendure J. Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science (New York, NY). 2016;353(6298):aaf7907.
Moiseenko F, Volkov N, Bogdanov A, Dubina M, Moiseyenko V. Resistance mechanisms to drug therapy in breast cancer and other solid tumors: An opinion. F1000Res. 2017;6:288.
Oppel F, Schürmann M, Goon P, Albers AE, Sudhoff H. Specific targeting of oncogenes using CRISPR technology. Cancer Res. 2018;78(19):5506–12. https://doi.org/10.1158/0008-5472.CAN-18-0571.
Schmelas C, Grimm D. Split Cas9, Not Hairs − Advancing the Therapeutic Index of CRISPR Technology. Biotechnol J. 2018;13(9).
Kühn R, Chu VT. Pop in, pop out: a novel gene-targeting strategy for use with CRISPR-Cas9. Genome Biol. 2015;16(1):244. https://doi.org/10.1186/s13059-015-0810-2.
Mollanoori H, Shahraki H, Rahmati Y, Teimourian S. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment. Hum Immunol. 2018;79(12):876–82. https://doi.org/10.1016/j.humimm.2018.09.007.
Hochheiser K, Kueh AJ, Gebhardt T, Herold MJ. CRISPR/Cas9: a tool for immunological research. Eur J Immunol. 2018;48(4):576–83. https://doi.org/10.1002/eji.201747131.
Montano A, Forero-Castro M, Hernandez-Rivas JM, Garcia-Tunon I, Benito R. Targeted genome editing in acute lymphoblastic leukemia: a review. BMC Biotechnol. 2018;18(1):45–10. https://doi.org/10.1186/s12896-018-0455-9.
Modell JW, Jiang W, Marraffini LA. CRISPR-Cas systems exploit viral DNA injection to establish and maintain adaptive immunity. Nature. 2017;544(7648):101–4. https://doi.org/10.1038/nature21719.
Liang C, Li F, Li J, Wang C, Wang L, Zhang G, et al. Tumor cell-targeted delivery of CRISPR/Cas9 by aptamer-functionalized lipopolymer for therapeutic genome editing of VEGFA in osteosarcoma. Biomaterials. 2017;147:68–85. https://doi.org/10.1016/j.biomaterials.2017.09.015.
Jubair L, McMillan NAJ. The therapeutic potential of CRISPR/Cas9 Systems in Oncogene-Addicted Cancer Types: virally driven cancers as a model system. Mol Therap - Nucleic Acids. 2017;8:56–63. https://doi.org/10.1016/j.omtn.2017.06.006.
Gong S, Yu HH, Johnson KA, Taylor DW. DNA unwinding is the primary determinant of CRISPR-Cas9 activity. Cell Rep. 2018;22(2):359–71. https://doi.org/10.1016/j.celrep.2017.12.041.
Xiao A, Cheng Z, Kong L, Zhu Z, Lin S, Gao G, et al. CasOT: a genome-wide Cas9/gRNA off-target searching tool. Bioinformatics. 2014;30(8):1180–2. https://doi.org/10.1093/bioinformatics/btt764.
Iyer V, Boroviak K, Thomas M, Doe B, Riva L, Ryder E, et al. No unexpected CRISPR-Cas9 off-target activity revealed by trio sequencing of gene-edited mice. PLoS Genet. 2018;14(7).
Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, et al. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol. 2018;284:91–101. https://doi.org/10.1016/j.jbiotec.2018.08.007.
Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release. 2017;266:17–26. https://doi.org/10.1016/j.jconrel.2017.09.012.
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–5. https://doi.org/10.1038/nature16526.
Chira S, Gulei D, Hajitou A, Zimta A-A, Cordelier P, Berindan-Neagoe I. CRISPR/Cas9: transcending the reality of genome editing. Mol Therap - Nucleic Acids. 2017;7:211–22. https://doi.org/10.1016/j.omtn.2017.04.001.
Klose RJ, Cooper S, Farcas AM, Blackledge NP, Brockdorff N. Chromatin sampling-an emerging perspective on targeting Polycomb repressor proteins. PLoS Genet. 2013;9(8):e1003717. https://doi.org/10.1371/journal.pgen.1003717.
Hay EA, Khalaf AR, Marini P, Brown A, Heath K, Sheppard D, et al. An analysis of possible off target effects following CAS9/CRISPR targeted deletions of neuropeptide gene enhancers from the mouse genome. Neuropeptides. 2017;64:101–7. https://doi.org/10.1016/j.npep.2016.11.003.
Havlicek S, Shen Y, Alpagu Y, Bruntraeger MB, Zufir NB, Phuah ZY, et al. Re-engineered RNA-guided FokI-nucleases for improved genome editing in human cells. Mol Therap. 2017;25(2):342–55. https://doi.org/10.1016/j.ymthe.2016.11.007.
Zhang X-H, Tee LY, Wang X-G, Huang Q-S, Yang S-H. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Therap - Nucleic Acids. 2015;4(11):e264. https://doi.org/10.1038/mtna.2015.37.
Hannafon BN, Cai A, Calloway CL, Xu YF, Zhang R, Fung KM, et al. miR-23b and miR-27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC cancer. 2019;19(1):642.
Annunziato S, Lutz C, Henneman L, Bhin J, Wong K, Siteur B, et al. In situ CRISPR-Cas9 base editing for the development of genetically engineered mouse models of breast cancer. EMBO J. 2020;39(5):e102169. https://doi.org/10.15252/embj.2019102169.
Campbell KJ, Blyth K. Somatic base editing to model oncogenic drivers in breast cancer. Lab Anim (NY). 2020;49(4):115–6. https://doi.org/10.1038/s41684-020-0510-8.
Albitar A, Rohani B, Will B, Yan A, Gallicano GI. The application of CRISPR/Cas technology to efficiently model complex Cancer genomes in stem cells. J Cell Biochem. 2018;119(1):134–40. https://doi.org/10.1002/jcb.26195.
Bailey J. CRISPR-mediated gene editing: scientific and ethical issues. Trends Biotechnol. 2019;37(9):920–1. https://doi.org/10.1016/j.tibtech.2019.05.002.
Bartkowski B, Theesfeld I, Pirscher F, Timaeus J. Snipping around for food: economic, ethical and policy implications of CRISPR/Cas genome editing. Geoforum. 2018;96:172–80. https://doi.org/10.1016/j.geoforum.2018.07.017.
Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. CRISPR–Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 2018;24(7):927–30. https://doi.org/10.1038/s41591-018-0049-z.