New developments in the theory of Gröbner bases and applications to formal verification
Tài liệu tham khảo
McMillan, 1993
Hachtel, 1996
Kunz, 2002, SAT and ATPG: Algorithms for Boolean decision problems, vol. 654, 309
O. Wienand, Ph.D Thesis, University of Kaiserslautern, Germany (2009) (in preparation)
Adams, 2003, An introduction to Gröbner bases
Greuel, 2002
Becker, 1993, Gröbner bases, a computational approach to commutative algebra, 10.1007/978-1-4612-0913-3
Agargün, 1999, Unique factorization rings with zero divisors, Comm. Algebra, 27, 1967, 10.1080/00927879908826543
Bouvier, 1974, Structure des anneaux a factorisation unique, Publ. Dep. Math. (Lyon), 11, 39
Fletcher, 1969, Unique factorization rings, Proc. Cambridge Phil. Soc., 65, 579, 10.1017/S0305004100003352
Zariski, 1979, vol. 28
Norton, 2002, Strong Gröbner bases for polynomials over a principal ideal ring, Bull. Austral. Math. Soc., 66, 145, 10.1017/S0004972700020165
M. Ghasemzadeh, A new algorithm for the quantified satisfiability problem, based on zero-suppressed binary decision diagrams and memorization, Ph.D. Thesis, University of Potsdam, Potsdam, Germany, Nov. 2005. http://opus.kobv.de/ubp/volltexte/2006/637/
Bérard, 1999
Bachmann, 1998, Monomial representations for Gröbner bases computations, 309
M. Brickenstein, A. Dreyer, PolyBoRi: A framework for Gröbner basis computations with boolean polynomials, Electronic Proceedings of Effective Methods in Algebraic Geometry MEGA 2007, 2007. http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf
M. Brickenstein, Slimgb: Gröbner Bases with Slim Polynomials, in: Rhine Workshop on Computer Algebra, 2006, pp. 55–66, Proc. RWCA’06, Basel, March 2006
G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR 3.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, 2005. http://www.singular.uni-kl.de
Hungerbühler, 2006, A generalization of the smarandache function, integers, Electronic J. Combinatorial Number Theory, 6
F. Somenzi, CUDD: CU decision diagram package, University of Colorado at Boulder, release 2.4.1 (2005). URL http://vlsi.colorado.edu/~fabio/CUDD/
Rossum, 2006
Collart, 1997, Converting bases with the Gröbner walk, J. Symbolic Comput., 24, 465, 10.1006/jsco.1996.0145
Hoos, 2000, SATLIB: An online resource for research on SAT, 283
Eén, 2003, An extensible SAT-solver, vol. 2919, 502