New beta-glucoside (bgl) genes in Bacillus subtilis: the bglP gene product has both transport and regulatory functions similar to those of BglF, its Escherichia coli homolog
Tóm tắt
The Bacillus subtilis sacY and sacT genes encode antiterminator proteins, similar to the Escherichia coli bglG gene product and required for transcription of sucrose metabolism genes. A Tn10 insertion into bglP (formerly sytA) has been previously identified as restoring sucrose utilization to a strain with deletions of both sacY and sacT. The nucleotide sequence of bglP showed a high degree of homology with the E. coli bglF gene (BglF is a beta-glucoside permease of the phosphotransferase system and also acts as a negative regulator of the BglG antiterminator). Complementation studies of an E. coli strain with a deletion of the bgl operon showed that BglP was a functional beta-glucoside permease. In B. subtilis, bglP complemented in trans both the bglP::Tn10 original insertion and a phenotypically similar bglP deletion. Disruption of licT abolished the suppressor phenotype in a bglP mutant. LicT is a recently identified third B. subtilis antiterminator of the BglG/SacY family. These observations indicated that BglP was also a negative regulator of LicT. Both LicT and BglP seem to be involved in the induction by beta-glucosides of an operon containing at least two genes, bglP itself and bglH, encoding a phospho-beta-glucosidase. Other beta-glucoside genes homologous to bglP and bglH have been recently described in B. subtilis. Thus, B. subtilis possesses several sets of beta-glucoside genes, like E. coli, but these genes do not appear to be cryptic.
Từ khóa
Tài liệu tham khảo
Amster-Choder , O. , F. Houman , and A. Wright . 1989 . Protein phosphorylation regulates transcription of the ~-glucoside utilization operon in E. coli . Cell 58 : 847 - 855 .
Anagnostopoulos C. P. J. Piggot and J. A. Hoch. 1993. The genetic map of Bacillus subtilis p. 425-461. In A. L. Sonenshein J. A. Hoch and R. Losick (ed.) Bacillus subtilis and other gram-positive bacteria: biochemistry physiology and molecular genetics. American Society for Microbiology Washington D.C.
Arnaud , M. , P. Vary , M. Zagorec , A. Klier , M. Débarbouillé , P. Postma , and G. Rapoport . 1992 . Regulation of the sacPA operon of Bacillus subtilis: identification of phosphotransferase system components involved in SacT activity . J. Bacteriol. 174 : 3161 - 3170 .
Aymerich , S. , and M. Steinmetz . 1992 . Specificity determinants and structural features in the RNA target of the bacterial antiterminator proteins of the BglG/SacY family . Proc. Natl. Acad. Sci. USA 89 : 10410 - 10414 .
Azevedo , V. , E. Alvarez , E. Zumstein , G. Damiani , V. Sgaramella , S. D. Ehrlich , and P. Serror . 1993 . An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes . Proc. Natl. Acad. Sci. USA 90 : 6047 - 6051 .
Crutz , A. - M. , and M. Steinmetz . 1992 . Transcription of the Bacillus subtilis sacX and sacY genes, encoding regulators of sucrose metabolism, is both inducible by sucrose and controlled by the DegS-DegU signalling system . J. Bacteriol. 174 : 6087 - 6095 .
Crutz , A. M. , M. Steinmetz , S. Aymerich , R. Richter , and D. Le Coq . 1990 . Induction of levansucrase in Bacillus subtilis: an antitermination mechanism negatively controlled by the phosphotransferase system . J. Bacteriol. 172 : 1043 - 1050 .
Débarbouillé , M. , A. Fouet , M. Arnaud , A. Klier , and G. Rapoport . 1990 . The sacT gene regulating the sacPA operon in Bacillus subtilis shares strong homology with transcriptional antiterminators . J. Bacteriol. 172 : 3966 - 3973 .
El Hassouni , M. , B. Henrissat , M. Chippaux , and F. Barras . 1992 . Nucleotide sequence of the arb genes, which control ~-glucoside utilization in Erwinia chrysanthemi: comparison with the Escherichia coli bgl operon and evidence for a new ~-glycohydrolase family including enzymes from eubacteria, archaebacteria, and humans . J. Bacteriol. 174 : 765 - 777 .
Fisher , S. H. , and A. L. Sonenshein . 1991 . Control of carbon and nitrogen metabolism in Bacillus subtilis. Annu . Rev. Microbiol. 45 : 107 - 135 .
Foster , S. J. 1993 . Molecular analysis of three major wall-associated proteins of Bacillus subtilis 168: evidence for processing of the product of a gene encoding a 258 kDa precursor two-domain ligand-binding protein . Mol. Microbiol. 8 : 299 - 310 .
Fouet , A. , M. Arnaud , A. Klier , and G. Rapoport . 1987 . Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria . Proc. Natl. Acad. Sci. USA 84 : 8773 - 8777 .
.Fujita Y. Personal communication.
Genetics Computer Group. 1991. Program manual for the GCG package version 7 April 1991. Genetics Computer Group Madison Wis.
Glaser , P. , F. Kunst , M. Arnaud , M. -P. Coudart , W. Gonzales , M. -F. Hullo , M. Ionescu , B. Lubochinsky , L. Marcellino , I. Moszer , E. Presecan , M. Santana , E. Schneider , J. Schweizer , A. Vertès , G. Rapoport , and A. Danchin . 1993 . Bacillus subtilis genome project: cloning and sequencing of the 97 kb region from 325~ to 333~ . Mol. Microbiol. 10 : 371 - 384 .
Glaser , P. , F. Kunst , M. Débarbouillé , A. Vertès , A. Danchin , and R. Dedonder . 1991 . A gene encoding a tyrosine tRNA synthetase is located near sacS in Bacillus subtilis . J. DNA Sequencing 1 : 251 - 261 .
Hall , B. G. , and L. Xu. 1992 . Nucleotide sequence, function, activation, and evolution of the cryptic asc operon of Escherichia coli K-12 . Mol. Biol. Evol. 9 : 688 - 706 .
Henner D. J. M. Yang L. Band H. Shimotsu M. Ruppen and E. Ferrari. 1986. Genes of Bacillus subtilis that regulate the expression of degradative enzymes p. 81-90. In M. Alacevic D. Hranueli and Z. Toman (ed.) Proceedings of the Fifth International Symposium on the Genetics of Industrial Microorganisms. Pliva Press Zagreb Yugoslavia.
Hoch , J. A. , M. Barat , and C. Anagnostopoulos . 1967 . Transformation and transduction in recombination-defective mutants of Bacillus subtilis . J. Bacteriol. 93 : 1925 - 1937 .
Houman , F. , M. R. Diaz-Torres , and A. Wright . 1990 . Transcriptional antitermination in the bgl operon of E. coli is modulated by a specific RNA binding protein . Cell 62 : 1153 - 1163 .
Itaya M. 1993. Physical map of the Bacillus subtilis 168 chromosome p. 463-471. In A. L. Sonenshein J. A. Hoch and R. Losick (ed.) Bacillus subtilis and other gram-positive bacteria: biochemistry physiology and molecular genetics. American Society for Microbiology Washington D.C.
Kraus , A. , C. Hueck , D. Gärtner , and W. Hillen . 1994 . Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression . J. Bacteriol. 176 : 1738 - 1745 .
Krüger S. and M. Hecker. Unpublished results.
Krüger , S. , J. Stülke , and M. Hecker . 1993 . Catabolite repression of ~-glucanase synthesis in Bacillus subtilis . J. Gen. Microbiol. 139 : 2047 - 2054 .
Le Coq D. C. Lindner and M. Steinmetz. Unpublished results.
Mahadevan , S. , A. E. Reynolds , and A. Wright . 1987 . Positive and negative regulation of the bgl operon of Escherichia coli . J. Bacteriol. 169 : 2570 - 2578 .
Miller J. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory Cold Spring Harbor N.Y.
Murphy , N. , D. J. McConnell , and B. A. Cantwell . 1984 . The DNA sequence of the gene and genetic control sites for the excreted Bacillus subtilis enzyme ~-glucanase . Nucleic Acids Res. 12 : 5355 - 5367 .
Parker , L. L. , and B. G. Hall . 1990 . Characterization and nucleotide sequence of the cryptic cel operon of Escherichia coli K12 . Genetics 124 : 455 - 471 .
Piggot , P. J. , and C. A. M. Curtis . 1987 . Analysis of the regulation of gene expression during Bacillus subtilis sporulation by manipulation of the copy number of spo-lacZ fusions . J. Bacteriol. 169 : 1260 - 1266 .
Podvin , L. , and M. Steinmetz . 1992 . A degU-containing SP~ prophage complements superactivator mutations affecting the Bacillus subtilis degSU operon . Res. Microbiol. 143 : 559 - 567 .
Sanger , F. , S. Nicklen , and A. R. Coulson . 1977 . DNA sequencing with chain-terminating inhibitors . Proc. Natl. Acad. Sci. USA 74 : 5463 - 5467 .
Schaefler , S. 1967 . Inducible system for the utilization of ~-glucosides in Escherichia coli. Active transport and utilization of ~-glucosides . J. Bacteriol. 93 : 254 - 263 .
Schnetz , K. , C. Toloczyki , and B. Rak . 1987 . ~-Glucoside (bgl) operon of Escherichia coli K-12: nucleotide sequence, genetic organization, and possible evolutionary relationship to regulatory components of two Bacillus subtilis genes . J. Bacteriol. 169 : 2579 - 2590 .
Shimotsu , H. , and D. J. Henner . 1986 . Construction of a single copy integration vector and its use in analysis of regulation of the trp operon of Bacillus subtilis . Gene 43 : 85 - 94 .
Steinmetz M. 1993. Carbohydrate catabolism: enzymes pathways and evolution. p. 157-170. In A. L. Sonenshein J. A. Hoch and R. Losick (ed.) Bacillus subtilis and other gram-positive bacteria: biochemistry physiology and molecular genetics. American Society for Microbiology Washington D.C.
Steinmetz , M. , D. Le Coq , and S. Aymerich . 1989 . Induction by sucrose of saccharolytic enzymes in Bacillus subtilis: evidence for two partially interchangeable regulatory pathways . J. Bacteriol. 171 : 1519 - 1523 .
Steinmetz , M. , and R. Richter . 1994 . Easy cloning of mini-Tn10 insertions from the Bacillus subtilis chromosome . J. Bacteriol. 176 : 1761 - 1763 .
Steinmetz , M. , and R. Richter . 1994 . Plasmids designed to alter the antibiotic resistance expressed by insertion mutations in Bacillus subtilis, through in vivo recombination . Gene 142 : 79 - 83 .
Stülke J. 1993. Mechanismen der Regulation der ~-Glucanase Synthese in Bacillus subtilis. Ph.D. thesis. Ernst-Moritz-Arndt University Greifswald Germany.
Stülke , J. , R. Hanschke , and M. Hecker . 1993 . Temporal activation of ~-glucanase synthesis in Bacillus subtilis is mediated by the GTP pool . J. Gen. Microbiol. 139 : 2041 - 2045 .
Völker , U. , S. Engelmann , B. Maul , S. Riethdorf , A. Völker , R. Schmid , H. Mach , and M. Hecker . 1991 . Analysis of the induction of general stress proteins of Bacillus subtilis . Microbiology 140 : 741 - 752 .
Wetzstein , M. , U. Völker , J. Dedio , S. Löbau , U. Zuber , M. Schiesswohl , C. Herget , M. Hecker , and W. Schumann . 1992 . Cloning, sequencing and molecular analysis of the dnaK locus from Bacillus subtilis . J. Bacteriol. 174 : 3300 - 3310 .
Yanisch-Perron , C. , J. Vieira , and J. Messing . 1985 . Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors . Gene 33 : 103 - 119 .
Zhang , J. , and A. Aronson . 1994 . A Bacillus subtilis bglA gene encoding phospho-~-glucosidase is inducible and closely linked to a NADH dehydrogenase-encoding gene . Gene 140 : 85 - 90 .