Neuropsychiatric symptoms are early indicators of an upcoming metabolic decline in Alzheimer’s disease

Translational Neurodegeneration - Tập 10 - Trang 1-11 - 2021
Kok Pin Ng1,2,3, Tharick A. Pascoal1,2, Sulantha Mathotaarachchi1,2, Yiong Huak Chan4, Lai Jiang5,6, Joseph Therriault1,2, Andrea L. Benedet1,2, Monica Shin1,2, Nagaendran Kandiah3, Celia M. T. Greenwood5,6, Pedro Rosa-Neto1,2, Serge Gauthier1,2
1Alzheimer’s Disease Research Unit, McGill Centre for Studies in Aging, McGill University, Montréal, Canada
2Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Canada
3Department of Neurology, National Neuroscience Institute, Singapore City, Singapore
4Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
5Lady Davis Institute, McGill University, Montreal, Canada
6Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada

Tóm tắt

Neuropsychiatric symptoms (NPS) are increasingly recognized as early non-cognitive manifestations in the Alzheimer’s disease (AD) continuum. However, the role of NPS as an early marker of pathophysiological progression in AD remains unclear. Dominantly inherited AD (DIAD) mutation carriers are young individuals who are destined to develop AD in future due to the full penetrance of the genetic mutation. Hence, the study of DIAD mutation carriers enables the evaluation of the associations between pure AD pathophysiology and metabolic correlates of NPS without the confounding effects of co-existing pathologies. In this longitudinal study, we aimed to identify regional brain metabolic dysfunctions associated with NPS in cognitively intact DIAD mutation carriers. We stratified 221 cognitively intact participants from the Dominantly Inherited Alzheimer’s Network according to their mutation carrier status. The interactions of NPS measured by the Neuropsychiatric Inventory-Questionnaire (NPI-Q), age, and estimated years to symptom onset (EYO) as a function of metabolism measured by [18F]flurodeoxyglucose ([18F]FDG) positron emission tomography, were evaluated by the mixed-effects regression model with family-level random effects in DIAD mutation carriers and non-carriers. Exploratory factor analysis was performed to identify the neuropsychiatric subsyndromes in DIAD mutation carriers using the NPI-Q sub-components. Then the effects of interactions between specific neuropsychiatric subsyndromes and EYO on metabolism were evaluated with the mixed-effects regression model. A total of 119 mutation carriers and 102 non-carriers were studied. The interaction of higher NPI-Q and shorter EYO was associated with more rapid declines of global and regional [18F]FDG uptake in the posterior cingulate and ventromedial prefrontal cortices, the bilateral parietal lobes and the right insula in DIAD mutation carriers. The neuropsychiatric subsyndromes of agitation, disinhibition, irritability and depression interacted with the EYO to drive the [18F]FDG uptake decline in the DIAD mutation carriers. The interaction of NPI and EYO was not associated with [18F]FDG uptake in DIAD mutation non-carriers. The NPS in cognitively intact DIAD mutation carriers may be a clinical indicator of subsequent metabolic decline in brain networks vulnerable to AD, which supports the emerging conceptual framework that NPS represent early manifestations of neuronal injury in AD. Further studies using different methodological approaches to identify NPS in preclinical AD are needed to validate our findings.

Tài liệu tham khảo

Lyketsos CG, Carrillo MC, Ryan JM, Khachaturian AS, Trzepacz P, Amatniek J, et al. Neuropsychiatric symptoms in Alzheimer’s disease. Alzheimers Dement. 2012;7:532–9. Lyketsos CG, Lopez O, Jones B, Fitzpatrick AL, Breitner J, DeKosky S. Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the cardiovascular health study. JAMA. 2002;288:1475–83. Vik-Mo AO, Giil LM, Ballard C, Aarsland D. Course of neuropsychiatric symptoms in dementia: 5-year longitudinal study. Int J Geriatr Psychiatry. 2018;33(10):1361–9. Scaricamazza E, Colonna I, Sancesario GM, Assogna F, Orfei MD, Franchini F, et al. Neuropsychiatric symptoms differently affect mild cognitive impairment and Alzheimer’s disease patients: a retrospective observational study. Neurol Sci. 2019;40(7):1377–82. Fischer CE, Ismail Z, Schweizer TA. Delusions increase functional impairment in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2012;33:393–9. Teng E, Lu PH, Cummings JL. Neuropsychiatric symptoms are associated with progression from mild cognitive impairment to Alzheimer’s disease. Dement Geriatr Cogn Disord. 2007;24:253–9. Karttunen K, Karppi P, Hiltunen A, Vanhanen M, Välimäki T, Martikainen J, et al. Neuropsychiatric symptoms and quality of life in patients with very mild and mild Alzheimer’s disease. Int J Geriatr Psychiatry. 2011;26:473–82. Geda YE, Roberts RO, Mielke MM, Knopman DS, Christianson TJH, Pankratz VS, et al. Baseline neuropsychiatric symptoms and the risk of incident mild cognitive impairment: a population-based study. Am J Psychiatry. 2014;171:572–81. Masters MC, Morris JC, Roe CM. Noncognitive symptoms of early Alzheimer disease: a longitudinal analysis. Neurology. 2015;84:617–22. Wise EA, Rosenberg PB, Lyketsos CG, Leoutsakos JM. Time course of neuropsychiatric symptoms and cognitive diagnosis in National Alzheimer’s coordinating centers volunteers. Alzheimers Dement (Amst). 2019;11:333–9. Burhanullah MH, Tschanz JAT, Peters ME, Leoutsakos JM, Matyi J, Lyketsos CG, et al. Neuropsychiatric symptoms as risk factors for cognitive decline in clinically normal older adults: the Cache County study. Am J Geriatr Psychiatry. 2020;28(1):64–71. Ismail Z, Smith EE, Geda Y, Sultzer D, Brodaty H, Smith G, et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behavioral impairment. Alzheimers Dement. 2016;12:195–202. Ng KP, Pascoal TA, Mathotaarachchi S, Chung CO, Benedet AL, Shin M, et al. Neuropsychiatric symptoms predict hypometabolism in preclinical Alzheimer disease. Neurology. 2017;88:1814–21. Bekris LM, Yu CE, Bird TD, Tsuang DW. Review article: genetics of Alzheimer disease. J Geriatr Psychiatry Neurol. 2010;23(4):213–27. Jack CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16. Bateman RJ, Xiong C, Benzinger TLS, Fagan AM, Goate A, Fox NC, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med. 2012;367:795–804. Fagan AM, Xiong C, Jasielec MS, Bateman RJ, Goate AM, Benzinger TLS, et al. Longitudinal change in CSF biomarkers in autosomal-dominant Alzheimer’s disease. Sci Transl Med. 2014;6(226):226ra30. Ringman JM, Liang LJ, Zhou Y, Vangala S, Teng E, Kremen S, et al. Early behavioural changes in familial Alzheimer’s disease in the dominantly inherited Alzheimer network. Brain. 2015;138:1036–45. Ringman JM, Monsell S, Ng DW, Zhou Y, Nguyen A, Coppola G, et al. Neuropathology of autosomal dominant Alzheimer disease in the national Alzheimer coordinating center database. J Neuropathol Exp Neurol. 2016;75:284–90. Morris JC, Aisen PS, Bateman RJ, Benzinger TL, Cairns NJ, Fagan AM, et al. Developing an international network for Alzheimer’s research: the dominantly inherited Alzheimer network. Clin Investig (Lond). 2012;2(10):975–84. Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98. Storandt M, Balota DA, Aschenbrenner AJ, Morris JC. Clinical and psychological characteristics of the initial cohort of the dominantly inherited Alzheimer network (DIAN). Neuropsychology. 2014;28:19–29. Kaufer DI, Cummings JL, Ketchel P, Smith V, MacMillan A, Shelley T, et al. Validation of the NPI-Q, a brief clinical form of the neuropsychiatric inventory. J Neuropsychiatry Clin Neurosci. 2000;12:233–9. Wang G, Coble D, McDade EM, Hassenstab J, Fagan AM, Benzinger TLS, et al. Staging biomarkers in preclinical autosomal dominant Alzheimer’s disease by estimated years to symptom onset. Alzheimers Dement. 2019;15(4):506–14. Ad-Dab’bagh Y, Lyttelton O, Muehlboeck JS, Lepage C, Einarson D, Mok K, et al. The CIVET image-processing environment: a fully automated comprehensive pipeline for anatomical neuroimaging research. Proc. 12th Annu. Meet Organ Hum Brain Mapp. 2006:2266. Pascoal TA, Mathotaarachchi S, Mohades S, Benedet AL, Chung C-O, Shin M, et al. Amyloid-β and hyperphosphorylated tau synergy drives metabolic decline in preclinical Alzheimer’s disease. Mol Psychiatry. 2017;22:306–11. Nugent S, Croteau E, Potvin O, Castellano CA, Dieumegarde L, Cunnane SC, et al. Selection of the optimal intensity normalization region for FDG-PET studies of normal aging and Alzheimer’s disease. Sci Rep. 2020;10(1):9261. López Mora DA, Sampedro F, Camacho V, Fernández A, Fuentes F, Duch J, et al. Selection of reference regions to model neurodegeneration in Huntington disease by 18 F-FDG PET/CT using imaging and clinical parameters. Clin Nucl Med. 2019;44(1):e1–5. R Developement Core Team. R: A Language and Environment for Statistical Computing. R Found Stat Comput. 2015;1:409. Worsley KJ, Taylor JE, Tomaiuolo F, Lerch J. Unified univariate and multivariate random field theory. Neuroimage. 2004;23(Suppl 1):S189–95. Banks SJ, Raman R, He F, Salmon DP, Ferris S, Aisen P, et al. The Alzheimer’s disease cooperative study prevention instrument project: longitudinal outcome of behavioral measures as predictors of cognitive decline. Dement Geriatr Cogn Dis Extra. 2014;4(3):509–16. Krell-Roesch J, Ruider H, Lowe VJ, Stokin GB, Pink A, Roberts RO, et al. FDG-PET and neuropsychiatric symptoms among cognitively normal elderly persons: the Mayo clinic study of aging. J Alzheimers Dis. 2016;53:1609–16. Greicius MD, Supekar K, Menon V, Dougherty RF. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex. 2009;19:72–8. Liguori C, Chiaravalloti A, Sancesario G, Stefani A, Sancesario GM, Mercuri NB, et al. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2016;43(11):2040–9. Mevel K, Chételat G, Eustache F, Desgranges B. The default mode network in healthy aging and Alzheimer’s disease. Int J Alzheimers Dis 2011;2011:535816. He X, Qin W, Liu Y, Zhang X, Duan Y, Song J, et al. Abnormal salience network in normal aging and in amnestic mild cognitive impairment and Alzheimer’s disease. Hum Brain Mapp. 2014;35:3446–64. Goulden N, Khusnulina A, Davis NJ, Bracewell RM, Bokde AL, McNulty JP, et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage. 2014;99:180–90. Palaniyappan L, Liddle PF. Does the salience network play a cardinal role in psychosis? An emerging hypothesis of insular dysfunction. J Psychiatry Neurosci. 2012;37(1):17–27. Manoliu A, Meng C, Brandl F, Doll A, Tahmasian M, Scherr M, et al. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder. Front Hum Neurosci. 2014;21(7):930. Ballarini T, Iaccarino L, Magnani G, Ayakta N, Miller BL, Jagust WJ, et al. Neuropsychiatric subsyndromes and brain metabolic network dysfunctions in early onset Alzheimer ’ s disease. Hum Brain Mapp. 2016;37(12):4234–47. Aalten P, Verhey FRJ, Boziki M, Brugnolo A, Bullock R, Byrne EJ, et al. Consistency of neuropsychiatric syndromes across dementias: results from the European Alzheimer disease consortium - part II. Dement Geriatr Cogn Disord. 2007;25:1–8. Nowrangi MA, Lyketsos CG, Rosenberg PB. Principles and management of neuropsychiatric symptoms in Alzheimer’s dementia. Alzheimers Res Ther. 2015;7(1):12. Bechara A, Damasio H, Damasio AR, Lee GP. Different contributions of the human amygdala and ventromedial prefrontal cortex to decision-making. J Neurosci. 1999;19:5473–81. Zald DH, Andreotti C. Neuropsychological assessment of the orbital and ventromedial prefrontal cortex. Neuropsychologia. 2010;48(12):3377–91. Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct. 2008;213(1–2):93–118. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655–67. Balthazar MLF, Pereira FRS, Lopes TM, da Silva EL, Coan AC, Campos BM, et al. Neuropsychiatric symptoms in Alzheimer’s disease are related to functional connectivity alterations in the salience network. Hum Brain Mapp. 2014;35(4):1237–46. Rosenberg PB, Nowrangi MA, Lyketsos CG. Neuropsychiatric symptoms in Alzheimer’s disease: What might be associated brain circuits? Mol Aspects Med. 2015;43–44:25–37. Ismail Z, Agüera-Ortiz L, Brodaty H, Cieslak A, Cummings J, Fischer CE, et al. The mild behavioral impairment checklist (MBI-C): a rating scale for neuropsychiatric symptoms in pre-dementia populations. J Alzheimers Dis. 2017;56:929–38. Mallo SC, Ismail Z, Pereiro AX, Facal D, Lojo-Seoane C, Campos-Magdaleno M, et al. Assessing mild behavioral impairment with the mild behavioral impairment-checklist in people with mild cognitive impairment. J Alzheimers Dis. 2018;66:83–95. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361–70. Lovibond SH, Lovibond PF. Manual for the depression anxiety stress scales. Behav Res Ther. 1995;33(3):335–43. Lussier FZ, Pascoal TA, Chamoun M, Therriault J, Tissot C, Savard M, et al. Mild behavioral impairment is associated with β-amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimers Dement. 2020;16:192–9. Fried EI. Lack of theory building and testing impedes progress in the factor and network literature. 2020. Available from: www.eiko-fried.com. DOI https://doi.org/10.17605/OSF.IO/6CTS9. Canevelli M, Adali N, Voisin T, Soto ME, Bruno G, Cesari M, et al. Behavioral and psychological subsyndromes in Alzheimer’s disease using the neuropsychiatric inventory. Int J Geriatr Psychiatry. 2013;28(8):795–803. Hellton KH, Cummings J, Vik-Mo AO, Nordrehaug JE, Aarsland D, Selbaek G, et al. The truth behind the Zeros: a new approach to principal component analysis of the neuropsychiatric inventory. Multivariate Behav Res. 2020:1–16.