Neuroprotective effect of ceftriaxone in a rat model of traumatic brain injury
Tóm tắt
Từ khóa
Tài liệu tham khảo
Luo CL, Li BX, Chen XP et al (2011) Autophagy is involved in traumatic brain injury-induced cell death and contributes to functional outcome deficits in mice. Neuroscience 184:54–63
Uryu K, Laurer H, McIntosh T et al (2002) Repetitive mild brain trauma accelerates Aβ deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of Alzheimer amyloidosis. J Neurosc 22:446–454
Fairman W, Amara S (1999) Functional diversity of excitatory amino acid transporters: ion channel and transport modes. Am J Physiol Renal Physiol 277:F481–F486
Kim K, Lee SG, Kegelman TP et al (2011) Role of excitatory amino acid transporter-2 (EAAT2) and glutamate in neurodegeneration: opportunities for developing novel therapeutics. J Cell Physiol 226:2484–2493
Maragakis NJ, Dietrich J, Wong V et al (2004) Glutamate transporter expression and function in human glial progenitors. Glia 45:133–143
Rothstein JD, Patel S, Regan MR et al (2005) β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77
Rasmussen B, Unterwald EM, Rawls SM (2011) Glutamate transporter subtype 1 (GLT-1) activator ceftriaxone attenuates amphetamine-induced hyperactivity and behavioral sensitization in rats. Drug Alcohol Depend 118:484–488
Mimura K, Tomimatsu T, Minato K et al (2011) Ceftriaxone preconditioning confers neuroprotection in neonatal rats through glutamate transporter 1 upregulation. Reprod Sci 18:1193–1201
Ramos KM, Lewis MT, Morgan KN et al (2010) Spinal upregulation of glutamate transporter GLT-1 by ceftriaxone: therapeutic efficacy in a range of experimental nervous system disorders. Neuroscience 169:1888–1900
Ketheeswaranathan P, Turner NA, Spary EJ, Batten TFC, McColl BW, Saha S (2011) Changes in glutamate transporter expression in mouse forebrain areas following focal ischemia. Brain Res 1418:93–103
Verma R, Mishra V, Sasmal D, Raghubir R (2010) Pharmacological evaluation of glutamate transporter 1 (GLT-1) mediated neuroprotection following cerebral ischemia/reperfusion injury. Eur J Pharmacol 638:65–71
Pozuelo-Rubio M (2011) 14-3-3ζ binds class III phosphatidylinositol-3-kinase and inhibits autophagy. Autophagy 7:240–242
Chu CT (2008) Eaten alive. Autophagy and neuronal cell death after hypoxia-ischemia. Am J Pathol 172:284
Lai Y, Hickey RW, Yaming Chen HB (2007) Autophagy is increased after traumatic brain injury in mice and is partially inhibited by the antioxidant γ-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab 28:540–550
Shi R, Weng J, Zhao L, Li XM, Gao TM, Kong J (2012) Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci Ther 18:250–260
Marmarou A, Foda MAAE, Brink W, Campbell J, Kita H, Demetriadou K (1994) A new model of diffuse brain injury in rats. J Neurosurg 80:291–300
Tang J, Liu J, Zhou C et al (2004) MMP-9 deficiency enhances collagenase-induced intracerebral hemorrhage and brain injury in mutant mice. J Cereb Blood Flow Metab 24:1133–1145
Hui-guo L, Kui L, Yan-ning Z, Yong-jian X (2010) Apocynin attenuate spatial learning deficits and oxidative responses to intermittent hypoxia. Sleep Med 11:205–212
Song S, Gao J, Wang K et al (2013) Attenuation of brain edema and spatial learning deficits by the inhibition of NADPH oxidase activity using apocynin following diffuse traumatic brain injury in rats. Mol Med Rep 7:327–331
Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R (2007) Rapamycin is a neuroprotective treatment for traumatic brain injury. Neurobiol Dis 26:86–93
Harvey BK, Airavaara M, Hinzman J et al (2011) Targeted over-expression of glutamate transporter 1 (glt-1) reduces ischemic brain injury in a rat model of stroke. PLoS ONE 6:e22135
Shacka JJ, Lu J, Xie ZL, Uchiyama Y, Roth KA, Zhang J (2007) Kainic acid induces early and transient autophagic stress in mouse hippocampus. Neurosci Lett 414:57–60
Wei J, Pan X, Pei Z et al (2012) The beta-lactam antibiotic, ceftriaxone, provides neuroprotective potential via anti-excitotoxicity and anti-inflammation response in a rat model of traumatic brain injury. J Trauma Acute Care Surg 73:654–660