Neuronal Activity Promotes Oligodendrogenesis and Adaptive Myelination in the Mammalian Brain

Erin M. Gibson1, David Purger1,2, Christopher W. Mount1,3, Andrea Goldstein1, Grant L. Lin1,3, Lauren Wood1, Ingrid Inema1, Sarah E. Miller1, Gregor Bieri3, J. Bradley Zuchero4, Ben A. Barres4, Pamelyn J. Woo1, Hannes Vogel5, Michelle Monje1
1Departments of Neurology, Neurosurgery, and Pediatrics, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
2Graduate Program in Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
3Graduate Program in Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA.
4Departments of Neurobiology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
5Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA

Tóm tắt

On-Demand Activity Oligodendroglia ensheath axons in the brain with myelin, which provides the insulation that speeds up transmission of neuronal electrical impulses. The process of myelination in the human brain goes on for decades, concurrent with all manner of brain development and cognitive activity. Gibson et al. (p. 10.1126/science.1252304 , published online 10 April; see the Perspective by Bechler and ffrench-Constant ) used optogenetics to study myelination in response to neural activity. Electrical activity in the motor cortex of the brain of awake mice led to proliferation and differentiation of oligodendrocytes and consequently increased myelination and alterations in motor response.

Từ khóa


Tài liệu tham khảo

P. I. Yakovlev “The myelogenetic cycles of regional maturation of the brain.” in Regional Development of the Brain in Early Life A. Minkowski Ed. (Blackwell Scientific Publications Oxford 1967) pp. 3–70.

10.1016/j.neuroimage.2011.11.094

10.1093/schbul/15.4.585

10.1038/ncb2750

10.1038/361258a0

10.1073/pnas.93.18.9887

10.1523/JNEUROSCI.18-22-09303.1998

10.1016/j.neuron.2006.02.006

10.1126/science.1206998

10.1016/j.neulet.2010.05.043

10.1016/j.yebeh.2011.06.025

10.1038/35012083

10.1016/j.neuron.2005.04.025

10.1038/nature04302

10.1038/nn1854

10.1523/JNEUROSCI.1355-08.2008

10.1523/JNEUROSCI.6000-09.2010

10.1523/JNEUROSCI.2455-11.2011

10.1016/j.neuron.2007.03.005

10.1073/pnas.0700384104

10.1038/nn1525

10.1016/j.neuron.2011.06.004

10.3389/fncom.2013.00110

10.1038/nn.3390

10.1038/nn.3469

10.1111/j.1474-9726.2005.00158.x

10.1126/science.1088417

10.1073/pnas.2234031100

10.1016/j.mcn.2005.10.006

10.1006/bbrc.1996.1112

10.1016/S0169-328X(98)00040-0

10.1016/0165-5728(90)90061-Q

10.1046/j.1471-4159.1999.0730538.x

10.1523/JNEUROSCI.4717-05.2006

10.1523/JNEUROSCI.2001-12.2013

10.1016/S0960-9822(00)00757-0

10.1083/jcb.200412101

10.1523/JNEUROSCI.4876-11.2012

10.1126/science.1103709

10.1152/ajplegacy.1970.219.5.1256

10.1089/08977150150502613

10.1038/ncomms1518

10.1523/JNEUROSCI.1001-12.2013

10.1016/j.neuron.2013.01.006

10.1038/nn.2412

10.1523/JNEUROSCI.3048-13.2013

10.1038/nn.3263

10.1126/science.1220845

10.1016/j.cell.2011.06.014

10.1038/385157a0

10.1016/j.neuroscience.2013.11.007

10.1162/jocn_a_00240

10.1073/pnas.1101657108

10.1038/ng.1102

10.1038/nature10833

10.1038/nprot.2009.226

B. J. Franklin G. Paxinos The Mouse Brain (Elsevier New York 2008).

10.1523/JNEUROSCI.4178-07.2008