Neuro-protective effects of Ligustri Fructus by suppression of oxidative stress in mouse model of Parkinson’s disease
Tóm tắt
Tài liệu tham khảo
Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803
Choi DK et al (2005) Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson’s disease in mice. J Neurosci 25:6594–6600. doi:10.1523/JNEUROSCI.0970-05.2005
Chung YC et al (2011) Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation. Neuropharmacology 60:963–974. doi:10.1016/j.neuropharm.2011.01.043S0028-3908(11)00054-2
Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909
Feng LR, Maguire-Zeiss KA (2010) Gene therapy in Parkinson’s disease: rationale and current status. CNS Drugs 24:177–192. doi:10.2165/11533740-000000000-000001
Gao HM, Liu B, Zhang W, Hong JS (2003) Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 17:1954–1956. doi:10.1096/fj.03-0109
Lang AE, Lozano AM (1998) Parkinson’s disease. first of two parts. N Engl J Med 339:1044–1053. doi:10.1056/NEJM199810083391506
Li X, Li Y, Chen J, Sun J, Sun X, Kang X (2010) Tetrahydroxystilbene glucoside attenuates MPP + -induced apoptosis in PC12 cells by inhibiting ROS generation and modulating JNK activation. Neurosci Lett 483:1–5. doi:10.1016/j.neulet.2010.07.027S0304-3940(10)00928-6
Riederer P, Wuketich S (1976) Time course of nigrostriatal degeneration in parkinson’s disease. a detailed study of influential factors in human brain amine analysis. J Neural Transm 38:277–301
Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281:35785–35793. doi:10.1074/jbc.M602799200