Neural Networks for Optimal Approximation of Continuous Functions on the Unit Sphere

Cheng Li1, Hans-Bernd Knoop2, Xiaoying Zhou2
1Department of Mathematics, Lishui University, 323000, Lishui, China
2Faculty of Mathematics, University of Duisburg-Essen, 47048, Duisburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chui K.K., Li X.: Approximation by ridge functions and neural networks with one hidden layer. J. Approx. Theory 70, 131–141 (1992)

Cybenko G.: Approximation by superposition of sigmoidal functions. Mathematical of Control. signal Syst. 2, 303–314 (1989)

DeVore R., Howard R., Micchelli C.A.: Optimal nonlinear approximation. Manuscripta Mathematica 63, 303–314 (1989)

Ditzian Z.: Jackson-type inequality on the sphere. Acta Math. Hungar. 102, 1–35 (2004)

Leshno M., Lin V., Pinkus A., Schocken S.: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks 6, 861–867 (1993)

Mhaskar H.N., Micchelli C.A.: Approximation by superposition of a sigmoidal function and radial basis functions. Adv. Appl. Math. 13, 350–373 (1992)

Wang K.Y., Li L.Q.: Harmonic Analysis and Approximation on the Unit Sphere. Science Press, Beijing (2000)

Xie, T.F., Zhou, X.: Neural networks for optimal approximation of continuous functions in $${\mathbb{R}^d}$$ . (to appear in Appl. Math. - A Journal of Chinese University)