Neural Interaction Between Risk Sensitivity and Cognitive Control Predicting Health Risk Behaviors Among Late Adolescents

Journal of Research on Adolescence - Tập 27 Số 3 - Trang 674-682 - 2017
Jungmeen Kim‐Spoon1, Kirby Deater‐Deckard2, Nina Lauharatanahirun1,3, Julee P. Farley4, Pearl H. Chiu1,3,5, Warren K. Bickel1,3,5, Brooks King‐Casas1,3,5,6
1Virginia Tech
2University of Massachusetts
3Virginia Tech Carilion Research Institute
4Virginia Tech Center for Research in SEAD Education
5Virginia Tech Carilion School of Medicine
6Virginia Tech—Wake Forest School of Biomedical Engineering and Sciences

Tóm tắt

The developmental period of adolescence is characterized by increasing incidence of health risk behaviors (HRBs). Based on theoretical models that emphasize the moderating role of cognitive control, this study examined how neural correlates of cognitive control and risk sensitivity interact to predict HRBs among late adolescents (17–20 years). Neuroimaging data indicate that risk‐related hemodynamic activity in the anterior insula during anticipation of uncertain outcomes predicts HRBs among late adolescents exhibiting greater dorsal anterior cingulate cortex (dACC) activity during a cognitive interference task but not among late adolescents requiring less dACC activity. These results present neural evidence for a significant moderating effect of cognitive control on the link between risk sensitivity and HRBs among late adolescents.

Từ khóa


Tài liệu tham khảo

Arbuckle J. L., 1996, Advanced structural equation modeling: Issues and techniques, 243

10.1016/j.dcn.2012.09.007

10.1016/j.dcn.2014.07.008

10.1038/sj.mp.4001217

10.1037/a0013740

10.1016/j.dr.2007.08.003

Centers for Disease Control and Prevention(CDC). (2012).Youth risk behavior survey. Retrieved fromhttp://www.cdc.gov/Features/YRBS/

Centers for Disease Control and Prevention (CDC). (2014).Youth risk behavior surveillance—United States 2013. Retrieved fromhttp://www.cdc.gov/mmwr/pdf/ss/ss6304.pdf

10.1207/S15328007SEM0902_5

10.1111/jora.12001

10.1016/j.neubiorev.2008.10.009

10.1016/j.neuroimage.2004.12.038

10.1016/j.neuropsychologia.2006.10.004

10.1016/j.addbeh.2014.12.007

10.1016/j.neuroimage.2009.11.004

10.1093/cercor/bhp225

10.1257/000282802762024700

Johnston L. D., 2014, Monitoring the Future national survey results on drug use, 1975–2013: Volume 2, College students and adults ages 19–55

10.1016/j.addbeh.2013.12.011

10.1016/j.neuropsychologia.2016.08.028

10.1111/jcpp.12338

Kim‐Spoon J. Kahn R. E. Lauharatanahirun N. Deater‐Deckard K. Bickel W. K. Chiu P. H. et al. (2016).Executive functioning and substance use in adolescence: Neurobiological and behavioral perspectives. Manuscript under review.

10.1016/j.conb.2012.06.001

10.1016/j.bandc.2009.08.005

10.1037/0033‐2909.114.2.376

10.1523/JNEUROSCI.0003‐10.2010

10.1038/npp.2011.28

10.3389/fnhum.2011.00178

10.1016/j.dcn.2013.09.001

10.1038/nn2062

10.1111/j.1529‐1006.2006.00026.x

10.1016/j.neubiorev.2013.03.004

10.2105/AJPH.2005.065870

10.1016/j.tics.2010.10.002

10.1159/000358918

Smith V. L., 1976, Experimental economics: Induced value theory, American Economic Review, 27, 4

10.1037/neu0000083

10.1002/dev.20445

United States Census Bureau. (2012).American community survey. Retrieved April 3 2013 fromhttp://factfinder2.census.gov/faces/nav/jsf/pages/searchresults.xhtml?refresh=t

10.15288/jsad.2011.72.70

10.1016/j.neuroimage.2010.02.038

Wechsler D., 2001, Wechsler test of adult reading