Networks and epidemic models
Tóm tắt
Networks and the epidemiology of directly transmitted infectious diseases are fundamentally linked. The foundations of epidemiology and early epidemiological models were based on population wide random-mixing, but in practice each individual has a finite set of contacts to whom they can pass infection; the ensemble of all such contacts forms a ‘mixing network’. Knowledge of the structure of the network allows models to compute the epidemic dynamics at the population scale from the individual-level behaviour of infections. Therefore, characteristics of mixing networks—and how these deviate from the random-mixing norm—have become important applied concerns that may enhance the understanding and prediction of epidemic patterns and intervention measures.
Here, we review the basis of epidemiological theory (based on random-mixing models) and network theory (based on work from the social sciences and graph theory). We then describe a variety of methods that allow the mixing network, or an approximation to the network, to be ascertained. It is often the case that time and resources limit our ability to accurately find all connections within a network, and hence a generic understanding of the relationship between network structure and disease dynamics is needed. Therefore, we review some of the variety of idealized network types and approximation techniques that have been utilized to elucidate this link. Finally, we look to the future to suggest how the two fields of network theory and epidemiological modelling can deliver an improved understanding of disease dynamics and better public health through effective disease control.
Từ khóa
Tài liệu tham khảo
Bailey N.T.J The mathematical theory of epidemics. 1957 London:Griffin.
Bollobás B Random graphs. 1985 London:Academic Press.
Grenfell B.T, 1992, Chance and chaos in measles dynamics, J. R. Stat. Soc. B, 54, 383
Hethcote H.W, 1984, Springer Lecture Notes in Biomathematics
Leinhardt S. 1977 New York:Academic Press.
Milgram S, 1967, The small world problem, Psychol. Today, 1, 61
Mollison D, 1977, Spatial contact models for ecological and epidemic spread, J. R. Stat. Soc, 39, 283
Morris M, 1997, Sexual networks and HIV, AIDS, 11, S209
National Audit Office Identifying and tracking livestock in England. 2003 London:The Stationary Office.
Scott J Social network analysis: a handbook. 1991 London:SAGE Publications.
Watts D.J Small worlds: the dynamics of networks between order and randomness. 1999 Princeton:Princeton University Press.
West D.B Introduction to graph theory. 1996 Upper Saddle River NJ:Prentice Hall.