Networks and epidemic models

Journal of the Royal Society Interface - Tập 2 Số 4 - Trang 295-307 - 2005
Matt J. Keeling1, Ken Eames2
1Department of Biological Sciences & Mathematics Institute, University of WarwickGibbet Hill Road, Coventry CV4 7AL, UK
2Department of ZoologyDowning Street, Cambridge CB2 3EJ, UK

Tóm tắt

Networks and the epidemiology of directly transmitted infectious diseases are fundamentally linked. The foundations of epidemiology and early epidemiological models were based on population wide random-mixing, but in practice each individual has a finite set of contacts to whom they can pass infection; the ensemble of all such contacts forms a ‘mixing network’. Knowledge of the structure of the network allows models to compute the epidemic dynamics at the population scale from the individual-level behaviour of infections. Therefore, characteristics of mixing networks—and how these deviate from the random-mixing norm—have become important applied concerns that may enhance the understanding and prediction of epidemic patterns and intervention measures.

Here, we review the basis of epidemiological theory (based on random-mixing models) and network theory (based on work from the social sciences and graph theory). We then describe a variety of methods that allow the mixing network, or an approximation to the network, to be ascertained. It is often the case that time and resources limit our ability to accurately find all connections within a network, and hence a generic understanding of the relationship between network structure and disease dynamics is needed. Therefore, we review some of the variety of idealized network types and approximation techniques that have been utilized to elucidate this link. Finally, we look to the future to suggest how the two fields of network theory and epidemiological modelling can deliver an improved understanding of disease dynamics and better public health through effective disease control.

Từ khóa


Tài liệu tham khảo

10.1038/43601

10.1038/35019019

10.2307/2982185

Anderson R.M& May R.M Infectious diseases of humans. 1992 Oxford:Oxford University Press.

Bailey N.T.J The mathematical theory of epidemics. 1957 London:Griffin.

10.1016/0375-9601(90)90451-S

10.1126/science.286.5439.509

Barbour A, 1990, Stochastic processes in epidemic theory, 86, 10.1007/978-3-662-10067-7_8

10.1086/386272

Bollobás B Graph theory. 1979 New York:Springer.

Bollobás B Random graphs. 1985 London:Academic Press.

10.1098/rspb.1999.0869

10.1136/sti.2003.007187

10.1239/jap/1032192860

10.1007/BF00280169

10.1086/425277

10.1073/pnas.202244299

10.1098/rspb.2003.2554

10.1016/j.mbs.2004.02.003

10.1126/science.287.5453.667

10.1001/jama.1997.03550150035018

10.1098/rspb.1997.0131

10.1093/aje/kwg104

10.1038/nature02541

10.1097/00007435-200011000-00008

10.1126/science.1061020

10.1080/01621459.1986.10478342

10.1073/pnas.0307506101

10.1093/infdis/174.Supplement_2.S150

10.1111/1467-985X.00101

10.1097/00007435-200011000-00006

10.1097/00007435-199701000-00009

10.1038/nature03548

10.1016/0025-5564(82)90036-0

Grenfell B.T, 1992, Chance and chaos in measles dynamics, J. R. Stat. Soc. B, 54, 383

10.1038/414716a

Grimmett G Percolation. 1989 Berlin:Springer.

10.1126/science.1074674

10.1016/j.tpb.2003.09.006

Harary F Graph theory. 1969 Reading MA:Addison-Wesley.

10.1214/aop/1176996493

10.1098/rspb.2002.2191

Hethcote H.W, 1984, Springer Lecture Notes in Biomathematics

10.1038/35036627

10.1136/sti.78.suppl_1.i145

10.1016/S0378-8733(97)00001-4

10.1016/S0966-842X(97)01147-5

10.1098/rspb.1999.0716

10.1016/j.tpb.2004.08.002

10.1098/rspb.1997.0159

10.1016/S0167-2789(00)00187-1

10.1098/rspa.1927.0118

10.1016/0277-9536(85)90269-2

10.1097/00007435-200101000-00006

10.1177/144078337701300215

10.1093/oxfordjournals.aje.a008926

10.1103/PhysRevLett.86.2909

Leinhardt S. 1977 New York:Academic Press.

10.1038/35082140

10.1016/S1286-4579(02)00058-8

10.1126/science.1061076

10.1016/j.jtbi.2004.07.026

Milgram S, 1967, The small world problem, Psychol. Today, 1, 61

Mollison D, 1977, Spatial contact models for ecological and epidemic spread, J. R. Stat. Soc, 39, 283

10.1103/PhysRevE.61.5678

Morris M, 1997, Sexual networks and HIV, AIDS, 11, S209

10.1016/S0025-5564(99)00061-9

National Audit Office Identifying and tracking livestock in England. 2003 London:The Stationary Office.

10.1073/pnas.98.2.404

10.1103/PhysRevE.66.016128

10.1103/PhysRevE.60.7332

10.1016/0040-5809(88)90019-6

10.1103/PhysRevLett.86.3200

10.1258/0956462991913853

10.1136/sti.78.suppl_1.i159

10.1098/rspb.1991.0142

10.1098/rspb.2002.2305

10.1006/tpbi.1997.1323

10.1098/rspb.1997.0228

10.1126/science.1086478

10.1016/j.socnet.2004.05.001

10.1016/S0140-6736(99)04482-7

10.1097/00007435-200102000-00001

10.1097/00007435-200306000-00002

10.1097/00002030-199812000-00016

10.1103/PhysRevLett.89.218701

10.1007/BF00276090

Scott J Social network analysis: a handbook. 1991 London:SAGE Publications.

10.1111/0081-1750.00099

10.1098/rsbl.2004.0188

10.2307/2786545

10.1016/S0966-842X(99)01546-2

10.1103/PhysRevE.66.056105

Wasserman S& Faust K Social network analysis. 1994 Cambridge:Cambridge University Press.

Watts D.J Small worlds: the dynamics of networks between order and randomness. 1999 Princeton:Princeton University Press.

10.1038/30918

West D.B Introduction to graph theory. 1996 Upper Saddle River NJ:Prentice Hall.

10.1097/00002030-199409000-00018

10.1097/00007435-200101000-00005