Network structure of functional hippocampal lateralization in birds

Hippocampus - Tập 25 Số 11 - Trang 1418-1428 - 2015
Elisabeth Jonckers1, Onur Güntürkün2, Geert De Groof1, Luce Vander Elst1, Verner P. Bingman3,4
1Bio‐Imaging Laboratory University of Antwerp Antwerp Belgium
2Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
3Department of Psychology, Bowling Green State University, Bowling Green, Ohio
4J.P. Scott Center for Neuroscience, Mind and Behavior Bowling Green State University Bowling Green Ohio

Tóm tắt

ABSTRACTFunctional hemispheric asymmetry is a common feature of vertebrate brain organization, yet little is known about how hemispheric dominance is implemented at the neural level. One notable example of hemispheric dominance in birds is the leading role of the left hippocampal formation in controlling navigational processes that support homing in pigeons. Relying on resting state fMRI analyses (where Functional connectivity (FC) can be determined by placing a reference ‘seed’ for connectivity in one hemisphere), we show that following seeding in either an anterior or posterior region of the hippocampal formation of homing pigeons and starlings, the emergent FC maps are consistently larger following seeding of the left hippocampus. Left seedings are also more likely to result in FC maps that extend to the contralateral hippocampus and outside the boundaries of the hippocampus. The data support the hypothesis that broader FC is one neural‐organizational property that confers, with respect to navigation, functional dominance to the left hippocampus of birds. © 2015 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

10.3389/fnana.2014.00059

10.1371/journal.pone.0005307

10.1016/S0010-9452(08)70110-2

Belcheva I, 2007, Hippocampal asymmetry in serotonergic modulation of learning and memory in rats, Laterality, 12, 475, 10.1080/13576500701453983

10.1515/REVNEURO.2006.17.1-2.17

10.1016/S0896-6273(02)00830-9

10.1007/BF00213077

10.1073/pnas.91.16.7410

10.1016/j.bbr.2012.10.044

10.1523/JNEUROSCI.3289-04.2004

10.1037/0735-7044.118.6.1460

10.1046/j.0953-816x.2001.01522.x

10.1111/j.1460-9568.2005.04444.x

10.1002/hbm.22028

10.1016/j.neuroimage.2014.08.043

Gunturkun O., 1997, Avian visual lateralization: A review, Neuroreport, 8, iii

10.1097/00001756-199812210-00023

10.1007/s00429-012-0400-y

10.1038/nature01834

10.1016/j.neuroimage.2005.11.048

10.1016/j.neuroimage.2012.01.061

10.1038/nature09875

10.1002/cne.23549

10.1016/j.peptides.2008.01.016

10.1371/journal.pone.0018876

10.1002/mrm.24990

10.1016/j.neuroimage.2010.10.053

10.1126/science.1082609

10.1002/hipo.20562

10.1038/nn.2915

10.1037/0096-1523.2.3.299

10.1111/j.1460-9568.2007.05350.x

10.1523/JNEUROSCI.17-18-07103.1997

10.1016/S0896-6273(03)00197-1

10.3758/s13415-010-0017-7

10.1242/jeb.043208

10.1098/rstb.1999.0482

10.1016/j.bbr.2006.12.010

10.1093/cercor/bhn100

10.3389/fpsyg.2012.00005

Ocklenburg S, 2013, Lateralisation of conspecific vocalisation in non‐human vertebrates, Laterality, 18, 1, 10.1080/1357650X.2011.626561

10.1017/S1355617704105080

10.1101/lm.36201

Prior H, 2002, Orientation and lateralized cue use in pigeons navigating a large indoor environment, J Exp Biol, 205, 1795, 10.1242/jeb.205.12.1795

10.1016/j.bandl.2013.05.015

10.1016/j.bbr.2004.06.012

10.1002/cne.20118

10.3389/fncom.2013.00089

10.1073/pnas.0807461105

10.1002/hipo.20886

10.1073/pnas.1405648111

10.1002/hipo.20139

10.1038/nrn3137

10.1016/j.heares.2013.09.011

10.1080/1357650X.2012.723008

10.1002/hipo.20492

10.1037/0735-7044.115.3.602

10.1046/j.1460-9568.2003.02593.x

10.1016/S0166-4328(99)00062-5

10.1016/j.bbr.2014.05.016

10.1016/j.cogbrainres.2005.03.005

10.1098/rstb.2008.0240

10.1016/j.neuroimage.2011.04.061

10.1111/j.1467-7687.2005.00427.x

10.1111/j.1460-9568.2012.08049.x

10.1523/JNEUROSCI.0787-14.2014

10.1038/nature00958

10.1016/j.pscychresns.2011.07.016