Kiểm soát tắc nghẽn mạng với định tuyến đa đường Markovian

Springer Science and Business Media LLC - Tập 147 - Trang 231-251 - 2013
Roberto Cominetti1, Cristóbal Guzmán2
1Departamento de Ingeniería Industrial, Universidad de Chile, Santiago, Chile
2School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, USA

Tóm tắt

Trong bài báo này, chúng tôi xem xét một mô hình tích hợp cho các giao thức TCP/IP với định tuyến đa đường. Mô hình kết hợp Tối đa hóa Tiện ích Mạng cho kiểm soát tỷ lệ dựa trên độ trễ hàng đợi đầu-cuối, với Cân bằng Lưu lượng Markovian cho định tuyến dựa trên tổng độ trễ kỳ vọng. Chúng tôi chứng minh sự tồn tại của một trạng thái cân bằng duy nhất, được đặc trưng như là giải pháp của một chương trình lồi hoàn toàn không ràng buộc. Một thuật toán phân tán để giải quyết vấn đề tối ưu hóa này được đề xuất, cùng với một thảo luận ngắn về cách nó có thể được triển khai bằng cách điều chỉnh các giao thức Internet hiện tại.

Từ khóa

#kiểm soát tắc nghẽn mạng #giao thức TCP/IP #định tuyến đa đường #độ trễ hàng đợi #Cân bằng Lưu lượng Markovian

Tài liệu tham khảo

Adler, M., Cai, J.Y., Shapiro, J., Towsley, D.: Estimation of congestion price using probabilistic packet marking, pp. 1–36. Technical Report (2002) Baillon, J., Cominetti, R.: Markovian traffic equilibrium. Math. Programm. 111, 33–56 (2008) Barré, S., Paasch, C., Bonaventure, O.: Multipath TCP: from theory to practice. Proceedings of the 10th International IFIP TC 6 Conference on Networking—Part I, pp. 444–457. Springer, Berlin (2011) Beckman, M., McGuire, C., Winsten, C.: Studies in Economics of Transportation. Yale University Press, New Haven (1956) Cao, Z., Wang, Z., Zegura, E.: Performance of hashing-based schemes for internet load balancing. In: INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings IEEE, vol. 1, pp. 332–341 (2000). doi:10.1109/INFCOM.2000.832203 Cominetti, R., Guzmán, C., Maureira, J.: Implementation of a distributed protocol for network congestion control with markovian multipath routing. Forthcoming (2014) Dumas, V., Guillemin, F., Robert, P.: A markovian analysis of additive-increase multiplicative-decrease (aimd) algorithms. Adv. Appl. Prob. 34, 85–111 (2002) Gallager, R.: A minimum delay routing algorithm using distributed computation. IEEE Trans. Commun. 25(1), 73–85 (1977) Gibbens, R., Kelly, F.: Resource pricing and the evolution of congestion control. Automatica 35, 1969–1985 (1999) Gojmerac, I.: Adaptive Multipath Routing for Internet Traffic Engineering. Ph.D. Thesis, Technische Universitat Wien (2007) Han, H., Shakkottai, S., Hollot, C.V., Srikant, R., Towsley, D.: Overlay TCP for multi-path routing and congestion control. ENS-INRIA ARC-TCP Workshop, Paris, France (2004) He, J., Rexford, J.: Towards internet-wide multipath routing. IEEE Netw. 22(2), 16–21 (2008) Kelly, F., Massoulié, L., Walton, N.: Resource pooling in congested networks: proportional fairness and product form. Queueing Syst. 63(1–4), 165–194 (2009) Kelly, F., Maulloo, A., Tan, D.: Rate control for communication networks: shadow prices, proportional fairness and stability. J. Oper. Res. Soc. 49(3), 237–252 (1998) Kelly, F.P., Voice, T.: Stability of end-to-end algorithms for joint routing and rate control. Comput. Commun. Rev. 35(2), 5–12 (2005) Key, P.B., Massoulié, L., Towsley, D.F.: Path selection and multipath congestion control. Commun. ACM 54(1), 109–116 (2011) Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: utility functions, random losses and ECN marks. IEEE/ACM Trans. Netw. 11(5), 689–702 (2003) Lee, G.M., Choi, J.S.: A survey of multipath routing for traffic engineering. Available trhough http://www.slashdocs.com/ivmqst/a-survey-of-multipath-routing.html (2002) Lin, X., Shroff, N.: Utility maximization for communication networks with multipath routing. IEEE Trans. Autom. Control 51(5), 766–781 (2006) Low, S.: A duality model of TCP and queue management algorithms. IEEE/ACM Trans. Netw. 11(4), 525–536 (2003) Low, S., Paganini, F., Doyle, J.: Internet congestion control. IEEE Control Syst. Mag. 22(1), 28–43 (2002) Low, S., Peterson, L., Wang, L.: Understanding vegas: a duality model. J. ACM 49(2), 207–235 (2002) Nagourney, A.: The negation of the braess paradox as demand increases: the wisdom of crowds in transportation networks. Europhys. Lett. 91(4), 48002 (2010) Padhye, J., Firoiu, V., Towsley, D., Kurose, J.: Modeling TCP reno performance: a simple model and its empirical validation. IEEE/ACM Trans. Netw. 8(2), 133–145 (2000) Paganini, F.: Congestion control with adaptive multipath routing based on optimization. Inform. Sci. Syst. 1, 333–338 (2006) Paganini, F., Mallada, E.: A unified approach to congestion control and node-based multipath routing. IEEE/ACM Trans. Netw. 17(5), 1413–1426 (2009) Roughgarden, T.: On the severity of braess’s paradox: Designing networks for selfish users is hard. J. Comput. Syst. Sci. 72(5), 922–953 (2006) Saibene, J.P., Lempert, R., Paganini, F.: An implementation of optimal dynamic load balancing based on multipath ip routing. In: GLOBECOM, pp. 1–5 (2010) Villamizar, C.: Mpls optimized multipath (mpls-omp). Internet Draft, draft-ietf- mpls-omp-01. http://tools.ietf.org/html/draft-villamizar-mpls-omp-01 (1999) Walton, N.S.: Proportional fairness and its relationship with multi-class queueing networks. Ann. Appl. Prob. 19(6), 2301–2333 (2009) Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 1, 325–378 (1952) Xu, D., Chiang, M., Rexford, J.: Link-state routing with hop-by-hop forwarding can achieve optimal traffic engineering. IEEE/ACM Trans. Netw. 19(6), 1717–1730 (2011) Yaïche, H., Mazumdar, R., Rosenberg, C.: A game theoretic framework for rate allocation and charging of available bit rate (abr) connections in atm networks. In: Broadband, Communications, pp. 222–233 (1998)