Neoproterozoic glaciation in the Earth System

Journal of the Geological Society - Tập 164 Số 5 - Trang 895-921 - 2007
Ian J. Fairchild1, M. J. Kennedy2
11School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK (e-mail: )
22Department of Earth Science, University of California Riverside, Riverside, CA 92521, USA

Tóm tắt

The Neoproterozoic contains severe glacial intervals (750–580 Ma) including two extending to low palaeomagnetic latitudes. Paucity of radiometric dates indicates the need for chronostratigraphic tools. Whereas the marine 87 Sr/ 86 Sr signatures show a steady rise, δ 13 C fluctuates, the most reproducible variations being negative signatures in carbonate caps to glacial units, but more diagenetic work is needed. Four conceptual models for the icehouse conditions are contrasted: Zipper-Rift Earth (diachronous glaciation related to continental rift margins), High-tilt Earth (high-obliquity and preferential low-latitude glaciation), Snowball Earth (extreme glaciation related to runaway ice–albedo feedback) and Slushball Earth (coexistence of unfrozen oceans and sea-level glaciers in the tropics). Climate models readily simulate runaway glaciation, but the Earth may not be able to recover from it. The Slushball state requires more extensive modelling. Biogeochemical models highlight the lack of CO 2 buffering in the Neoproterozoic and the likely transition from a methane- to a CO 2 -dominated climate system. Relevant processes include tropical weathering of volcanic provinces, and new land biotas stimulating both clay mineral formation and P delivery to the oceans, facilitating organic C burial. Hence a step change in the Earth System was probably both facilitated by organisms and responsible for moderating Phanerozoic climate.

Từ khóa


Tài liệu tham khảo

10.1130/0091-7613(1991)019<0445:TLPGMM>2.3.CO;2

Aitken J.D. 1991b. The Ice Brook Formation and post Rapitan Late Proterozoic glaciation Mackenzie Mountains Northwest Territories. Geological Survey of Canada Bulletin 404..

10.1038/nature03176

10.1130/0091-7613(2003)031<0431:EOCANA>2.0.CO;2

10.1126/science.1069651

10.1016/S0037-0738(01)00283-4

10.1016/j.sedgeo.2005.09.014

10.1130/G19939.1

10.1029/2000GL011557

10.1038/nature02260

10.1016/j.geomorph.2004.11.024

10.1016/0031-0182(82)90092-X

10.2475/ajs.294.1.56

10.2475/ajs.283.7.641

Besse J. & Courtillot V. 2002. Apparent and true polar wander and the geometry of the palaeomagnetic field over the last 200 Myr. Journal of Geophysical Research 107 2300 doi:10.1029/2000JB000050.

10.1126/science.1104657

10.1130/0091-7613(2003)031<0577:MNOCCI>2.0.CO;2

10.1126/science.11539488

10.1016/S0016-7037(96)00385-7

10.1144/jgs.157.5.909

10.1130/0091-7613(2000)28<175:NUZDFT>2.0.CO;2

10.1016/S0301-9268(01)00178-4

Budyko, M.I., 1969. The effects of solar radiation variations on the climate of the Earth. Tellus, XXI, 611–619.

Caldeira, K. & Kasting, J.F. 1992. Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds., 359, 226–228.

10.1038/24839

10.2475/ajs.304.10.839

10.1038/382127a0

Canfield D.E. Poulton S.W. & Narbonne G.M. 2006. Late Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science doi: 10.1126/science.1135013.

10.1016/j.epsl.2005.06.013

10.1016/j.earscirev.2004.09.001

Clark D.L. Whitman R.R. Morgan K.A. & Makey S.D. 1980. Stratigraphy and Glacial–Marine Sediments of the Amerasian Basin Central Arctic Ocean. Geological Society of America Special Papers 181..

10.1130/0016-7606(1974)85<1869:GSAAVT>2.0.CO;2

Coleman A.P. 1926. Ice Ages: Recent and Ancient . Macmillan London.

10.1130/0091-7613(2000)28<951:TFDNGE>2.0.CO;2

Condon, D., Prave, A.R. & Benn, D.I. 2002. Neoproterozoic glacial rain-out intervals: observations and implications. Geology, 20, 35–38.

10.1126/science.1107765

10.2110/palo.2003.p03-96

10.1073/pnas.0730560100

Craig G.Y. (introducer) 1997. The 1785 Abstract of James Hutton's Theory of the Earth . Edinburgh University Library Edinburgh.

Crossing A.R. & Gostin V.A. 1994. Isotopic signatures of carbonates associated with Sturtian (Neoproterozoic) glacial facies central Flinders Ranges South Australia. In: Deynoux M. Miller J. Domack E. Eyles N. Fairchild I.J. & Young G.M. (eds) 1994 Earth's Glacial Record . Cambridge University Press Cambridge 1994 165–175.

10.1130/0016-7606(1957)68[993:OOPM]2.0.CO;2

10.1029/2000GL011836

10.1130/0016-7606(1997)109<0016:ONPGAT>2.3.CO;2

10.1144/0016-764901061

10.1038/359605a0

10.1016/0031-0182(85)90082-3

10.1016/S0012-821X(02)01152-4

10.1038/nature02408

Dott, R.H., 1963. Dynamics of subaqueous gravity depositional processes. AAPG Bulletin, 47, 104–128.

Dyson, I.A., von der Borch, C.C. 1994. Sequence stratigraphy of an incised-valley fill: the Neoproterozoic Seacliff Sandstone, Adelaide Geosyncline, South Australia. In: Dalrymple, R.W., Boyd, R. & Zaitlin, B.A. (eds) Incised-Valley Systems: Origin and sedimentary Sequences. SEPM Special Publications, 51, 209–222.

10.1016/0031-0182(85)90087-2

10.1016/0012-821X(86)90197-4

Etienne J.L. Allen P.A. Rieu R. Le Guerroué E. 2007. Neoproterozoic glaciated basins: a critical review of the Snowball Earth hypothesis by comparison with Phanerozoic glaciations. In: Hambrey M.J. Christoffersen P. Glasser N.F. & Hubbard B. (eds) Glacial Processes and Products. International Association of Sedimentologists Special Publications in press.

10.2475/ajs.300.5.347

10.1016/S0040-1951(02)000642-X

10.1038/nature05203

10.1130/0091-7613(1983)11<692:GMFUPD>2.0.CO;2

10.1016/0012-8252(93)90002-O

10.1016/S0012-8252(03)00080-1

10.1016/0301-9268(91)90076-M

Fairchild I.J. 1993. Balmy shores and icy wastes: the paradox of carbonates associated with glacial deposits in Neoproterozoic times. In: Wright V.P (ed.) Sedimentology Review . 1 Blackwell Science Oxford 1–16.

10.1016/0301-9268(84)90042-1

10.1016/0301-9268(94)00079-7

10.1111/j.1365-3091.1987.tb00587.x

10.1017/S0016756800022809

Fairchild, I.J., Marshall, J.D., Bertrand-Sarfati, J. 1990. Stratigraphic shifts in carbon isotopes from Proterozoic stromatolitic carbonates (Mauritania)—influences of primary mineralogy and diagenesis. American Journal of Science, 290A, 46–79.

Fairchild I.J. Bradby L. & Spiro B. 1994. Reactive carbonate in glacial systems: a preliminary synthesis of its creation dissolution and reincarnation. In: Deynoux M. Miller J. Domack E. Eyles N. Fairchild I.J. & Young G.M. (eds) 1994 Earth's Glacial Record . Cambridge University Press Cambridge 1994 176–192.

Fairchild, I.J., Spiro, B., Herrington, P.M. & Song, T. 2000. Controls on Sr and C isotope compositions of Neoproterozoic Sr-rich limestones of E Greenland and N China. In: Grotzinger, J.P. & James, N.P. (eds) Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM Special Publications, 67, 297–313.

10.1130/G20609.1

10.1038/nature05345

10.1086/629839

Frisia, S., Wenk, H.-R. 1994. TEM and AEM study of pervasive, multi-step dolomitization of the Upper Triassic Dolomia Principale (Northern Italy). Journal of Sedimentary Petrology, 63, 1049–1058.

10.1016/j.sedgeo.2005.03.003

Goodman J.C. 2006. Through thick and thin: marine and meteoric ice in a ‘Snowball Earth’ climate. Geophysical Resesarch Letters 33 L16701 doi:10.1029/2006GL026840.

Goodman J.C. & Pierrehumbert R.T. 2003. Glacial flow of floating marine ice in ‘Snowball Earth’. Journal of Geophysical Research 108 3308 doi:10.1029/2002JC001471.

10.1126/science.151.3714.1082

Grotzinger, J.P. & James, N.P. 2000. Precambrian carbonates: evolution of understanding. In: Grotzinger, J.P. & James, N.P. (eds) Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM Special Publications, 67, 3–20.

10.2307/3515096

10.1146/annurev.earth.27.1.313

Halverson G.P. 2006. A Neoproterozoic chronology. In: Xiao S. & Kaufman A.J. (eds) Neoproterozoic Geobiology and Paleobiology . Springer New York 231–271.

10.1111/j.1365-2117.2004.00234.x

10.1130/B25630.1

Halverson G.P. Dudás F.Ö. Maloof A.C. & Bowring S.A. 2007. Evolution of the 87 Sr/ 86 Sr composition of Neoproterozoic seawater. Palaeogeography Palaeoclimatology Palaeoecology doi: 10.1016/j.palaeo.2007.02.028.

Hambrey M.J. & Harland W.B. (eds) 1981. Earth's Pre-Pleistocene Glacial Record . Cambridge University Press Cambridge.

10.1016/0031-0182(85)90088-4

10.1007/BF01821169

Harland W.B. 2007. Origins and assessment of snowball Earth hypotheses. Geological Magazine 144 in press.

Harland W.B. & Herod K. 1975. Glaciations through time. In: Wright A.E. & Moseley F. (eds) Ice Ages: Ancient and Modern . Seel House Press Liverpool 189–216.

10.1038/scientificamerican0864-28

Harland W.B. Armstrong R.L. Cox A.V. Craig L.E. Smith A.G. & Smith D.G. 1990. A Geological Time Scale 1989 . Cambridge University Press Cambridge.

10.1098/rstb.2006.1840

10.1126/science.1061457

Hegenberger W. 1993. Stratigraphy and Sedimentology of the Late Precambrian Witvlei and Nama Groups East of Windhoek. Geological Survey of Namibia Ministry of Mines and Energy Memoir 17..

Higgins J.A. & Schrag D.P. 2003. Aftermath of a snowball Earth. Geochemistry Geophysics Geosystems 4 1028 doi:10.1029/2002GC000403.

Hill, A.C., Arouri, K., Gorjan, P. & Walter, M.R. 2000. Geochemistry of marine and nonmarine environments of a Neoproterozoic cratonic carbonate–evaporite: the Bitter Springs Formation, Central Australia. In: Grotzinger, J.P. & James, N.P. (eds) Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM Special Publications, 67, 327–344.

Hoffman, P.F. & Schrag, D.P. 2000. Snowball Earth. Scientific American, 282(1), 50–57.

10.1046/j.1365-3121.2002.00408.x

10.1126/science.281.5381.1342

10.1130/G20519.1

Horodyski, R.J. & Knauth, P. 1993. Life on land in the Precambrian. Science, 263, 494–498.

10.1016/S0012-821X(02)00804-X

10.1130/G20923.1

10.1016/j.epsl.2006.03.026

10.1038/35013005

10.1029/1998GL900298

10.1016/S0009-2541(99)00080-7

10.1139/e01-046

10.1130/G20938.1

Jenkins, G.S., 2004a. A review of Neoproterozoic climate modeling studies. In: Jenkins, G.S., McMenamin, M., Sohl, L.E. & McKay, C.P. (eds) The Extreme Proterozoic: Geology, Geochemistry and Climate. American Geophysical Union Monographs, 146, 73–78.

Jenkins, G.S., 2004b. High obliquity as an alternative hypothesis to early and late Proterozoic extreme climate conditions. In: Jenkins, G.S., McMenamin, M., Sohl, L.E. & McKay, C.P. (eds) The Extreme Proterozoic: Geology, Geochemistry and Climate. American Geophysical Union Monographs, 146, 183–192.

10.1038/nature02201

10.2110/jsr.2006.086

Kah, L.C., Lyons, T.W. & Frank, T.D. 2005. Low marine sulphate and protracted oxygenation of the Proterozoic biosphere. Nature, 431, 834–838.

10.1016/j.epsl.2004.12.006

10.1016/j.precamres.2005.03.002

10.1098/rstb.2006.1839

10.1016/j.epsl.2006.09.029

10.1073/pnas.94.13.6600

10.1016/j.precamres.2006.02.007

10.1130/G22775.1

10.2110/jsr.66.1050

10.1130/0091-7613(1998)026<1059:TOFNG>2.3.CO;2

10.1130/0091-7613(2001)029<0443:APCCAI>2.0.CO;2

10.1130/0091-7613(2001)029<1135:CICONG>2.0.CO;2

10.1126/science.1118929

10.1130/0016-7606(2001)113<0650:SIVITN>2.0.CO;2

Kirschvink J.L. 1992. Late Proterozoic low-latitude glaciation. In: Schopf J.W. (ed.) The Proterozoic Biosphere . Cambridge University Press Cambridge 51–52.

Knoll, A.H. & Swett, K. 1990. Carbonate deposition during the late Proterozoic era: an example from Spitsbergen. American Journal of Science, 290, 104–132.

10.1038/321832a0

10.1080/00241160500409223

10.1073/pnas.0504878102

Kulling, O., 1934. Scientific results of the Swedish–Norwegian Arctic expedition in the summer of 1931. Geografiska Annaler, 2, 161–254.

10.1016/j.epsl.2005.04.040

10.1111/j.1365-3091.1973.tb01619.x

10.1130/0091-7613(2002)030<0891:NSEUSE>2.0.CO;2

10.1144/0016-76492006-074

Lenton T.M. & Watson A.J. 2004. Biotic enhancement of weathering atmospheric oxygen and carbon dioxide in the Neoproterozoic. Geophysical Research Letters 31 L05202 doi:10.1029/2003GL018802.

10.1046/j.1365-246X.2003.02021.x

10.1016/S0012-821X(04)00064-0

10.1016/0031-0182(89)90005-9

10.1038/376053a0

Loutit, T.S., Hardenbol, J., Vail, P.R. & Baum, G.R. 1988. Condensed sections: the key to age determination and correlation of continental margin sequences. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C. (eds) Sea-level Changes: an Integrated Approach. SEPM Special Publications, 42, 183–213.

Lovelock J. 1988. The Ages of Gaia . Oxford University Press Oxford.

Lovelock J. 2006. The Revenge of Gaia . Allen Lane London.

10.1016/S0012-821X(02)00960-3

10.1130/B25892.1

Marshall, H.G., Walker, J.C.G. & Kuhn, W.R. 1988. Long-term climate change and the geochemical cycle of carbon. Journal of Geophysical Research, 90, 791–801.

10.5962/p.360506

10.1016/0016-7037(94)90381-6

10.1130/G22694A.1

McIntyre D.B. & McKirdy A. 2001. James Hutton. The Founder of Modern Geology . National Museums of Scotland Edinburgh.

10.1016/S0301-9268(00)00130-3

10.1016/0012-821X(94)90253-4

10.1046/j.1365-3121.2001.00318.x

10.1144/GSL.SP.1990.053.01.22

10.1130/0016-7606(2002)114<0080:PGPROT>2.0.CO;2

10.1130/0091-7613(2003)031<0087:MRPA>2.0.CO;2

Peltier, W.R., Tarasov, L., Vettoretti, G. & Solheim, L.P. 2004. Climate dynamics in deep time: modeling the ‘Snowball Bifurcation’ and assessing the plausibility of its occurrence. In: Jenkins, G.S., McMenamin, M., Sohl, L.E. & McKay, C.P. (eds) The Extreme Proterozoic: Geology, Geochemistry and Climate. American Geophysical Union Monographs, 146, 107–124.

10.1038/nature01088

10.1038/nature02640

Pierrehumbert R.T. 2005. Climate dynamics of a hard snowball Earth. Journal of Geophysical Research 110 D01111 doi:1029/2004JD005162.

10.18814/epiiugs/1991/v14i2/005

Pollard, D. & Kasting, J.F. 2004. Climate–ice sheet simulations of Neoproterozoic glaciation before and after collapse to Snowball Earth. In: Jenkins, G.S., McMenamin, M., Sohl, L.E. & McKay, C.P. (eds) The Extreme Proterozoic: Geology, Geochemistry and Climate. American Geophysical Union Monographs, 146, 91–105.

Pollard D. & Kasting J.F. 2005. Snowball Earth: a thin ice solution with flowing sea-glaciers. Journal of Geophysical Research—Oceans 110 article number C07010.

Poulsen C.J. & Jacob R.L. 2004. Factors that inhibit snowball Earth simulation. Palaeoceanography 19 PA4021 doi:10.1029/2004PA001056.

10.1130/0091-7613(2002)030<0811:LOLITP>2.0.CO;2

Preiss, W.V., Walter, M.R., Coates, R.P. & Wells, A.T. 1978. Lithological correlation of the Adelaidean glaciogenic rocks in parts of the Amadeus, Ngalia & Georgina Basins. Bureau of Mineral Resources, Journal of Australian Geology and Geophysics, 3, 43–53.

10.1144/SP286.5

Ridgwell, A. & Kennedy, M. 2004. Secular changes in the importance of neritic carbonate deposition as a control on the magnitude and stability of Neoproterozoic ice ages. In: Jenkins, G.S., McMenamin, M., Sohl, L.E. & McKay, C.P. (eds) The Extreme Proterozoic: Geology, Geochemistry and Climate. American Geophysical Union Monographs, 146, 55–72.

10.1126/science.1088342

Riding, R., 2000. Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology, 41(Supplement 1), 179–214.

10.1016/0301-9268(94)00072-Y

10.1073/pnas.0832439100

10.1130/G21535.1

10.2475/ajs.274.7.673

10.1016/0012-821X(95)00106-M

10.1038/35053170

Schrag D.P. Berner R.A. Hoffman P. & Halverson G.P. 2002. On the initiation of a snowball Earth. Geochemistry Geophysics Geosystems 3 doi:10.1029/2001GC000219.

Shields, G.A., 1999. Working towards a new stratigraphic calibration scheme for the Neoproterozoic–Cambrian. Eclogae Geologicae Helveticae, 92, 221–233.

10.1046/j.1365-3121.2002.00396.x

10.1111/j.1365-3121.2005.00638.x

Shields G.A. & Veizer J. 2002. Precambrian marine carbonate isotope database: Version 1.1. Geochemistry Geophysics Geosystems 3 doi:10.1029/2001GC000266.

10.1144/0016-764902-115

10.1130/0016-7606(1999)111<1120:PPRIMC>2.3.CO;2

Spencer A.M. 1971. Late Pre-Cambrian Glaciation in Scotland. Memoirs of the Geological Society London 6..

Sumner, D.Y., 2001. Decimeter-thick encrustations of calcite and aragonite on the sea floor and implications for Neoarchean and Neoproterozoic ocean chemistry. In: Altermann, W. (ed.) Precambrian Sedimentary Environments. International Associations of Sedimentologists, Special Publications, 33, 107–120.

10.1016/j.sedgeo.2004.12.029

10.1016/S0012-821X(03)00396-0

Tajika, E., 2004. Analysis of carbon cycle system during the Neoproterozoic: implication for Snowball Earth events. In: Jenkins, G.S., McMenamin, M., Sohl, L.E. & McKay, C.P. (eds) The Extreme Proterozoic: Geology, Geochemistry and Climate. American Geophysical Union Monographs, 146, 45–54.

Thomas, G.P. & Connell, R.J. 1985. Iceberg drop, dump, and grounding structures from Pleistocene, glacio-lacustrine sediments, Scotland. Journal of Sedimentary Petrology, 55, 243–249.

10.2475/ajs.300.8.630

10.1126/science.1083469

10.1046/j.1365-3121.2003.00510.x

Walker D.A. 1996. Carbonates in marine polar sediments: palaeoceanographic and diagenetic studies . PhD thesis University of Birmingham.

Walker G. 2003. Snowball Earth . Bloomsbury London.

10.1029/JC086iC10p09776

10.1016/0301-9268(83)90008-6

Warren S.G. Brandt R.E. Grenfell T.C. & McKay C.P. 2002. Snowball Earth: ice thickness on the tropical ocean. Journal of Geophysical Research—Oceans 107 3167 doi:10.1029/2001JC001123.

10.1016/j.epsl.2005.03.020

Williams, G.E., 1972. Geological evidence relating to the origin and secular roation of the solar system. Modern Geology, 3, 165–181.

10.1017/S0016756800046185

10.1080/00167617908729104

10.1016/0012-8252(93)90004-Q

10.1029/1999RG900016

Williams, G.E. & Schmidt, P.W. 2004. Neoproterozoic glaciation: reconciling low palaeolatitudes and the geologic record. In: Jenkins, G.S., McMenamin, M., Sohl, L.E. & McKay, C.P. (eds) The Extreme Proterozoic: Geology, Geochemistry and Climate. American Geophysical Union Monographs, 146, 145–159.

10.1080/08120098508729331

10.1080/01490450590922532

10.1016/0301-9268(84)90035-4

10.1016/S0899-5362(02)00158-6

10.1126/science.1111347