Negatively curved molecular nanocarbons containing multiple heptagons are enabled by the Scholl reactions of macrocyclic precursors
Tài liệu tham khảo
Rickhaus, 2017, Chirality in curved polyaromatic systems, Chem. Soc. Rev., 46, 1643, 10.1039/C6CS00623J
Majewski, 2019, Bowls, hoops, and saddles: Synthetic approaches to curved aromatic molecules, Angew. Chem. Int. Ed., 58, 86, 10.1002/anie.201807004
Park, 2010, Designing rigid carbon foams, J. Phys. Condens. Matter, 22, 334220, 10.1088/0953-8984/22/33/334220
Park, 2003, Magnetism in all-carbon nanostructures with negative gaussian curvature, Phys. Rev. Lett., 91, 237204, 10.1103/PhysRevLett.91.237204
Kim, 2016, Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template, Nature, 535, 131, 10.1038/nature18284
Braun, 2018, Generating carbon schwarzites via zeolite-templating, Proc. Natl. Acad. Sci. USA, 115, E8116, 10.1073/pnas.1805062115
Pun, 2018, Toward negatively curved carbons, Acc. Chem. Res., 51, 1630, 10.1021/acs.accounts.8b00140
Kirschbaum, 2020, A chiral polycyclic aromatic hydrocarbon monkey saddle, Angew. Chem. Int. Ed., 59, 270, 10.1002/anie.201912213
Zhang, 2021, Charging a negatively curved nanographene and its covalent network, J. Am. Chem. Soc., 143, 5231, 10.1021/jacs.1c01642
Cheung, 2017, A twisted nanographene consisting of 96 carbon atoms, Angew. Chem. Int. Ed., 56, 9003, 10.1002/anie.201703754
Pun, 2019, Synthesis, structures, and properties of heptabenzo[7]circulene and octabenzo[8]circulene, J. Am. Chem. Soc., 141, 9680, 10.1021/jacs.9b03910
Kato, 2021, Double-helix supramolecular nanofibers assembled from negatively curved nanographenes, J. Am. Chem. Soc., 143, 5465, 10.1021/jacs.1c00863
Luo, 2012, Curved polycyclic aromatic molecules that are π-isoelectronic to hexabenzocoronene, J. Am. Chem. Soc., 134, 13796, 10.1021/ja3054354
Cheung, 2015, Aromatic saddles containing two heptagons, J. Am. Chem. Soc., 137, 3910, 10.1021/jacs.5b00403
Márquez, 2017, Versatile synthesis and enlargement of functionalized distorted heptagon-containing nanographenes, Chem. Sci., 8, 1068, 10.1039/C6SC02895K
Feng, 2013, Synthesis, structural analysis, and properties of [8]circulenes, Angew. Chem. Int. Ed., 52, 7791, 10.1002/anie.201303875
Miller, 2014, Synthesis and structural data of tetrabenzo[8]circulene, Chem. Eur. J., 20, 3705, 10.1002/chem.201304657
Gu, 2017, Synthesis, structure, and properties of tetrabenzo[7]circulene, Org. Lett., 19, 2246, 10.1021/acs.orglett.7b00714
Grzybowski, 2020, Synthetic applications of oxidative aromatic coupling—From biphenols to nanographenes, Angew. Chem. Int. Ed., 59, 2998, 10.1002/anie.201904934
Jassas, 2021, Scholl reaction as a powerful tool for the synthesis of nanographenes: A systematic review, RSC Adv., 11, 32158, 10.1039/D1RA05910F
Zhang, 2022, The Scholl reaction as a powerful tool for synthesis of curved polycyclic aromatics, Chem. Rev., 122, 14554, 10.1021/acs.chemrev.2c00186
Kawasumi, 2013, A grossly warped nanographene and the consequences of multiple odd-membered-ring defects, Nat. Chem., 5, 739, 10.1038/nchem.1704
Fernández-García, 2018, π-Extended corannulene-based nanographenes: Selective formation of negative curvature, J. Am. Chem. Soc., 140, 17188, 10.1021/jacs.8b09992
Yang, 2019, Contorted polycyclic aromatic hydrocarbons with two embedded azulene units, Angew. Chem. Int. Ed., 58, 17577, 10.1002/anie.201908643
Ogawa, 2020, Helical nanographenes embedded with contiguous azulene units, J. Am. Chem. Soc., 142, 13322, 10.1021/jacs.0c06156
Pradhan, 2013, Twisted polycyclic arenes by intramolecular Scholl reactions of C3-symmetric precursors, J. Org. Chem., 78, 2266, 10.1021/jo3027752
Qiu, 2020, Negatively curved nanographene with heptagonal and [5]helicene units, J. Am. Chem. Soc., 142, 14814, 10.1021/jacs.0c05504
Yamamoto, 1983, Synthesis and characterization of [7]circulene, J. Am. Chem. Soc., 105, 7171, 10.1021/ja00362a025
Yamamoto, 1991, [7.7]Circulene, a molecule shaped like a figure of eight, Angew. Chem. Int. Ed., 30, 1173, 10.1002/anie.199111731
Sakamoto, 2013, Tetrabenzo[8]circulene: Aromatic saddles from negatively curved graphene, J. Am. Chem. Soc., 135, 14074, 10.1021/ja407842z
Pun, 2020, An 80-carbon aromatic saddle enabled by a naphthalene-directed Scholl reaction, Org. Mater, 2, 248, 10.1055/s-0040-1716499
Xia, 2021, Synthesis of zigzag carbon nanobelts through Scholl reactions, Angew. Chem. Int. Ed., 60, 10311, 10.1002/anie.202100343
Fujikawa, 2015, Synthesis, structures, and properties of π-extended double helicene: A combination of planar and nonplanar π-systems, J. Am. Chem. Soc., 137, 7763, 10.1021/jacs.5b03118
Yamamoto, 1988, Synthesis and molecular structure of [7]circulene, J. Am. Chem. Soc., 110, 3578, 10.1021/ja00219a036
Hatanaka, 2016, Puckering energetics and optical activities of [7]circulene conformers, J. Phys. Chem. A, 120, 1074, 10.1021/acs.jpca.5b10543
Anslyn, 2006
Fernández-García, 2022, Synthetic chiral molecular nanographenes: The key figure of the racemization barrier, Chem. Commun., 58, 2634, 10.1039/D1CC06561K
Xiao, 2012, Synthesis and structure characterization of a stable nonatwistacene, Angew. Chem. Int. Ed., 51, 6094, 10.1002/anie.201200949
Chen, 2005, Nucleus-independent chemical shifts (NICS) as an aromaticity criterion, Chem. Rev., 105, 3842, 10.1021/cr030088+
Portella, 2005, Local aromaticity of [n]acenes, [n]phenacenes, and [n]helicenes (n = 1–9), J. Org. Chem., 70, 2509, 10.1021/jo0480388
The commonly used formal potential of the redox couple of ferrocenium/ferrocene (Fc+/Fc) in the Fermi scale is −5.1 eV, which is calculated on the basis of an approximation neglecting solvent effects with a work function of 4.46 eV for the normal hydrogen electrode (NHE) and an electrochemical potential of 0.64 V for (Fc+/Fc) versus NHE. See: Cardona, C.M., Li, W., Kaifer, A.E., Stockdale, D., and Bazan, G.C. (2011). Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23, 2367–2371. https://doi.org/10.1002/adma.201004554.
Shan, 2015, Monolayer field-effect transistors of nonplanar organic semiconductors with brickwork arrangement, Adv. Mater., 27, 3418, 10.1002/adma.201500149
Elbert, 2020, 2,7,11,16-Tetra-tert-butyl tetraindenopyrene revisited by an “inverse” synthetic approach, Chem. Eur. J., 26, 10585, 10.1002/chem.202001555