Negatively curved molecular nanocarbons containing multiple heptagons are enabled by the Scholl reactions of macrocyclic precursors

Chem - Tập 9 - Trang 2855-2868 - 2023
Ka Man Cheung1, Yongming Xiong1, Sai Ho Pun1, Xingjian Zhuo1, Qi Gong1, Xingwei Zeng1, Shilong Su1, Qian Miao1
1Department of Chemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Tài liệu tham khảo

Rickhaus, 2017, Chirality in curved polyaromatic systems, Chem. Soc. Rev., 46, 1643, 10.1039/C6CS00623J

Majewski, 2019, Bowls, hoops, and saddles: Synthetic approaches to curved aromatic molecules, Angew. Chem. Int. Ed., 58, 86, 10.1002/anie.201807004

Mackay, 1991, Diamond from graphite, Nature, 352, 762, 10.1038/352762a0

Park, 2010, Designing rigid carbon foams, J. Phys. Condens. Matter, 22, 334220, 10.1088/0953-8984/22/33/334220

Park, 2003, Magnetism in all-carbon nanostructures with negative gaussian curvature, Phys. Rev. Lett., 91, 237204, 10.1103/PhysRevLett.91.237204

Kim, 2016, Lanthanum-catalysed synthesis of microporous 3D graphene-like carbons in a zeolite template, Nature, 535, 131, 10.1038/nature18284

Braun, 2018, Generating carbon schwarzites via zeolite-templating, Proc. Natl. Acad. Sci. USA, 115, E8116, 10.1073/pnas.1805062115

Pun, 2018, Toward negatively curved carbons, Acc. Chem. Res., 51, 1630, 10.1021/acs.accounts.8b00140

Kirschbaum, 2020, A chiral polycyclic aromatic hydrocarbon monkey saddle, Angew. Chem. Int. Ed., 59, 270, 10.1002/anie.201912213

Zhang, 2021, Charging a negatively curved nanographene and its covalent network, J. Am. Chem. Soc., 143, 5231, 10.1021/jacs.1c01642

Cheung, 2017, A twisted nanographene consisting of 96 carbon atoms, Angew. Chem. Int. Ed., 56, 9003, 10.1002/anie.201703754

Pun, 2019, Synthesis, structures, and properties of heptabenzo[7]circulene and octabenzo[8]circulene, J. Am. Chem. Soc., 141, 9680, 10.1021/jacs.9b03910

Kato, 2021, Double-helix supramolecular nanofibers assembled from negatively curved nanographenes, J. Am. Chem. Soc., 143, 5465, 10.1021/jacs.1c00863

Luo, 2012, Curved polycyclic aromatic molecules that are π-isoelectronic to hexabenzocoronene, J. Am. Chem. Soc., 134, 13796, 10.1021/ja3054354

Cheung, 2015, Aromatic saddles containing two heptagons, J. Am. Chem. Soc., 137, 3910, 10.1021/jacs.5b00403

Márquez, 2017, Versatile synthesis and enlargement of functionalized distorted heptagon-containing nanographenes, Chem. Sci., 8, 1068, 10.1039/C6SC02895K

Feng, 2013, Synthesis, structural analysis, and properties of [8]circulenes, Angew. Chem. Int. Ed., 52, 7791, 10.1002/anie.201303875

Miller, 2014, Synthesis and structural data of tetrabenzo[8]circulene, Chem. Eur. J., 20, 3705, 10.1002/chem.201304657

Gu, 2017, Synthesis, structure, and properties of tetrabenzo[7]circulene, Org. Lett., 19, 2246, 10.1021/acs.orglett.7b00714

Grzybowski, 2020, Synthetic applications of oxidative aromatic coupling—From biphenols to nanographenes, Angew. Chem. Int. Ed., 59, 2998, 10.1002/anie.201904934

Jassas, 2021, Scholl reaction as a powerful tool for the synthesis of nanographenes: A systematic review, RSC Adv., 11, 32158, 10.1039/D1RA05910F

Zhang, 2022, The Scholl reaction as a powerful tool for synthesis of curved polycyclic aromatics, Chem. Rev., 122, 14554, 10.1021/acs.chemrev.2c00186

Kawasumi, 2013, A grossly warped nanographene and the consequences of multiple odd-membered-ring defects, Nat. Chem., 5, 739, 10.1038/nchem.1704

Fernández-García, 2018, π-Extended corannulene-based nanographenes: Selective formation of negative curvature, J. Am. Chem. Soc., 140, 17188, 10.1021/jacs.8b09992

Yang, 2019, Contorted polycyclic aromatic hydrocarbons with two embedded azulene units, Angew. Chem. Int. Ed., 58, 17577, 10.1002/anie.201908643

Ogawa, 2020, Helical nanographenes embedded with contiguous azulene units, J. Am. Chem. Soc., 142, 13322, 10.1021/jacs.0c06156

Pradhan, 2013, Twisted polycyclic arenes by intramolecular Scholl reactions of C3-symmetric precursors, J. Org. Chem., 78, 2266, 10.1021/jo3027752

Qiu, 2020, Negatively curved nanographene with heptagonal and [5]helicene units, J. Am. Chem. Soc., 142, 14814, 10.1021/jacs.0c05504

Yamamoto, 1983, Synthesis and characterization of [7]circulene, J. Am. Chem. Soc., 105, 7171, 10.1021/ja00362a025

Yamamoto, 1991, [7.7]Circulene, a molecule shaped like a figure of eight, Angew. Chem. Int. Ed., 30, 1173, 10.1002/anie.199111731

Sakamoto, 2013, Tetrabenzo[8]circulene: Aromatic saddles from negatively curved graphene, J. Am. Chem. Soc., 135, 14074, 10.1021/ja407842z

Pun, 2020, An 80-carbon aromatic saddle enabled by a naphthalene-directed Scholl reaction, Org. Mater, 2, 248, 10.1055/s-0040-1716499

Xia, 2021, Synthesis of zigzag carbon nanobelts through Scholl reactions, Angew. Chem. Int. Ed., 60, 10311, 10.1002/anie.202100343

Fujikawa, 2015, Synthesis, structures, and properties of π-extended double helicene: A combination of planar and nonplanar π-systems, J. Am. Chem. Soc., 137, 7763, 10.1021/jacs.5b03118

Yamamoto, 1988, Synthesis and molecular structure of [7]circulene, J. Am. Chem. Soc., 110, 3578, 10.1021/ja00219a036

Hatanaka, 2016, Puckering energetics and optical activities of [7]circulene conformers, J. Phys. Chem. A, 120, 1074, 10.1021/acs.jpca.5b10543

Anslyn, 2006

Fernández-García, 2022, Synthetic chiral molecular nanographenes: The key figure of the racemization barrier, Chem. Commun., 58, 2634, 10.1039/D1CC06561K

Pascal, 2006, Twisted acenes, Chem. Rev., 106, 4809, 10.1021/cr050550l

Xiao, 2012, Synthesis and structure characterization of a stable nonatwistacene, Angew. Chem. Int. Ed., 51, 6094, 10.1002/anie.201200949

Chen, 2005, Nucleus-independent chemical shifts (NICS) as an aromaticity criterion, Chem. Rev., 105, 3842, 10.1021/cr030088+

Krygowski, 2001, Structural aspects of aromaticity, Chem. Rev., 101, 1385, 10.1021/cr990326u

Portella, 2005, Local aromaticity of [n]acenes, [n]phenacenes, and [n]helicenes (n = 1–9), J. Org. Chem., 70, 2509, 10.1021/jo0480388

Stanger, 2020, NICS–past and present, Eur. J. Org. Chem., 2020, 3120, 10.1002/ejoc.201901829

The commonly used formal potential of the redox couple of ferrocenium/ferrocene (Fc+/Fc) in the Fermi scale is −5.1 eV, which is calculated on the basis of an approximation neglecting solvent effects with a work function of 4.46 eV for the normal hydrogen electrode (NHE) and an electrochemical potential of 0.64 V for (Fc+/Fc) versus NHE. See: Cardona, C.M., Li, W., Kaifer, A.E., Stockdale, D., and Bazan, G.C. (2011). Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23, 2367–2371. https://doi.org/10.1002/adma.201004554.

Shan, 2015, Monolayer field-effect transistors of nonplanar organic semiconductors with brickwork arrangement, Adv. Mater., 27, 3418, 10.1002/adma.201500149

Elbert, 2020, 2,7,11,16-Tetra-tert-butyl tetraindenopyrene revisited by an “inverse” synthetic approach, Chem. Eur. J., 26, 10585, 10.1002/chem.202001555

Wang, 2022, Robust radical cations of hexabenzoperylene exhibiting high conductivity and enabling an organic nonvolatile optoelectronic memory, J. Am. Chem. Soc., 144, 16612, 10.1021/jacs.2c06835