Functionalized π Stacks of Hexabenzoperylenes as a Platform for Chemical and Biological Sensing

Chem - Tập 4 - Trang 1416-1426 - 2018
Changqing Li1, Han Wu1, Tiankai Zhang2, Yujie Liang1, Bo Zheng1, Jiang Xia1, Jianbin Xu2, Qian Miao1
1Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
2Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China

Tài liệu tham khảo

Lin, 2012, Organic thin-film transistors for chemical and biological sensing, Adv. Mater., 24, 34, 10.1002/adma.201103334 Guo, 2010, Functional organic field-effect transistors, Adv. Mater., 22, 4427, 10.1002/adma.201000740 Tarabella, 2013, New opportunities for organic electronics and bioelectronics: ions in action, Chem. Sci., 4, 1395, 10.1039/c2sc21740f Torsi, 2013, Organic field-effect transistor sensors: a tutorial review, Chem. Soc. Rev., 42, 8612, 10.1039/c3cs60127g Someya, 2010, Chemical and physical sensing by organic field-effect transistors and related devices, Adv. Mater., 22, 3799, 10.1002/adma.200902760 Someya, 2016, The rise of plastic bioelectronics, Nature, 540, 379, 10.1038/nature21004 Sokolov, 2012, Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications, Acc. Chem. Res., 45, 361, 10.1021/ar2001233 Khodagholy, 2013, In vivo recordings of brain activity using organic transistors, Nat. Commun., 4, 1, 10.1038/ncomms2573 Huang, 2007, Hydroxy-terminated organic semiconductor-based field-effect transistors for phosphonate vapor detection, J. Am. Chem. Soc., 129, 9366, 10.1021/ja068964z See, 2007, Enhanced response of n-channel naphthalenetetracarboxylic diimide transistors to dimethyl methylphosphonate using phenolic receptors, Adv. Mater., 19, 3322, 10.1002/adma.200602924 Torsi, 2008, A sensitivity-enhanced field-effect chiral sensor, Nat. Mater., 7, 412, 10.1038/nmat2167 He, 2012, Hydrogen-bonded dihydrotetraazapentacenes, Org. Lett., 14, 1050, 10.1021/ol203404q Liang, 2008, Unexpected photooxidation of H-bonded tetracene, Org. Lett., 10, 1050, 10.1021/ol800620s Roberts, 2008, Water-stable organic transistors and their application in chemical and biological sensors, Proc. Natl. Acad. Sci. USA, 105, 12134, 10.1073/pnas.0802105105 Chen, 2015, Solution-processable, low-voltage, and high-performance monolayer field-effect transistors with aqueous stability and high sensitivity, Adv. Mater., 27, 2113, 10.1002/adma.201405378 McDonald, 2002, Poly(dimethylsiloxane) as a material for fabricating microfluidic devices, Acc. Chem. Res., 35, 491, 10.1021/ar010110q Shan, 2015, Monolayer field effect transistors of non-planar organic semiconductors with brickwork arrangement, Adv. Mater., 27, 3418, 10.1002/adma.201500149 Luo, 2012, Curved polycyclic aromatic molecules that are π-isoelectronic to hexabenzocoronene, J. Am. Chem. Soc., 134, 13796, 10.1021/ja3054354 Bushey, 2004, Using hydrogen bonds to direct the assembly of crowded aromatics, Angew. Chem. Int. Ed., 43, 5446, 10.1002/anie.200301678 Yan, 2011, A cocrystal strategy to tune the luminescent properties of stilbene type organic solid-state materials, Angew. Chem. Int. Ed., 50, 12483, 10.1002/anie.201106391 Fechtenkötter, 1999, Highly ordered columnar structures from hexa-peri-hexabenzocoronenes—synthesis, X-ray diffraction, and solid-state heteronuclear multiple-quantum NMR investigations, Angew. Chem. Int. Ed., 38, 3039, 10.1002/(SICI)1521-3773(19991018)38:20<3039::AID-ANIE3039>3.0.CO;2-5 Xiao, 2005, Molecular wires from contorted aromatic compounds, Angew. Chem. Int. Ed., 44, 7390, 10.1002/anie.200502142 Xiao, 2006, Transferring self-assembled, nanoscale cables into electrical devices, J. Am. Chem. Soc., 128, 10700, 10.1021/ja0642360 Hill, 2004, Self-assembled hexa-peri-hexabenzocoronene graphitic nanotube, Science, 304, 1481, 10.1126/science.1097789 Jin, 2005, Self-assembled graphitic nanotubes with one-handed helical arrays of a chiral amphiphilic molecular graphene, Proc. Natl. Acad. Sci. USA, 102, 10801, 10.1073/pnas.0500852102 Miao, 2006, Organization of acenes with a cruciform assembly motif, J. Am. Chem. Soc., 128, 1340, 10.1021/ja0570786 Lim, 2004, Exciton delocalization and superradiance in tetracene thin films and nanoaggregates, Phys. Rev. Lett., 92, 107402, 10.1103/PhysRevLett.92.107402 Sokolov, 2010, Induced sensitivity and selectivity in thin-film transistor sensors via calixarene layers, Adv. Mater., 22, 2349, 10.1002/adma.200903305 Jang, 2017, Point-of-use detection of amphetamine-type stimulants with host-molecule-functionalized organic transistors, Chem, 3, 641, 10.1016/j.chempr.2017.08.015 Hu, 2010, A rapid aqueous fluoride ion sensor with dual output modes, Angew. Chem. Int. Ed., 49, 4915, 10.1002/anie.201000790 Zhou, 2014, Fluorescence and colorimetric chemosensors for fluoride-ion detection, Chem. Rev., 114, 5511, 10.1021/cr400352m Wade, 2010, Fluoride ion complexation and sensing using organoboron compounds, Chem. Rev., 110, 3958, 10.1021/cr900401a Kim, 2003, Fluorescent self-amplifying wavelength-responsive sensory polymer for fluoride ions, Angew. Chem. Int. Ed., 42, 4803, 10.1002/anie.200352075 Someya, 2002, Integration and response of organic electronics with aqueous microfluidics, Langmuir, 18, 5299, 10.1021/la020026z Liu, 2013, Self-assembled monolayers of phosphonic acids with enhanced surface energy for high-performance solution-processed n-channel organic thin-film transistors, Angew. Chem. Int. Ed., 52, 6222, 10.1002/anie.201300353 Government of Hong Kong. Drinking water quality in Hong Kong. https://www.gov.hk/en/residents/environment/water/drinkingwater.htm. Street, 2003, Bipolaron mechanism for bias-stress effects in polymer transistors, Phys. Rev. B, 68, 085316, 10.1103/PhysRevB.68.085316 Zilker, 2001, Bias stress in organic thin-film transistors and logic gates, Appl. Phys. Lett., 79, 1124, 10.1063/1.1394718 The detection limit of present commerical fluoride-selective electrodes is about 1 μM. For example, see the user manual of Thermo Scientific Orion Fluoride Ion Selective Electrode (http://www.fondriest.com/pdf/thermo_fluoride_ise_manual.pdf). Green, 1990, Avidin and streptavidin, Methods Enzymol., 184, 51, 10.1016/0076-6879(90)84259-J Magliulo, 2013, Electrolyte-gated organic field-effect transistor sensors based on supported biotinylated phospholipid bilayer, Adv. Mater., 25, 2090, 10.1002/adma.201203587 Cui, 2001, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science, 293, 1289, 10.1126/science.1062711 Maiti, 2013, Gemcitabine−coumarin−biotin conjugates: a target specific theranostic anticancer prodrug, J. Am. Chem. Soc., 135, 4567, 10.1021/ja401350x Star, 2003, Electronic detection of specific protein binding using nanotube FET devices, Nano Lett., 3, 459, 10.1021/nl0340172 Lin, 2017, Self-assembled 2D free-standing Janus nanosheets with single layer thickness, J. Am. Chem. Soc., 139, 13592, 10.1021/jacs.7b06591 Kim, 2012, Biotin-functionalized semiconducting polymer in an organic field effect transistor and application as a biosensor, Sensors, 12, 11238, 10.3390/s120811238 Suspène, 2013, Copolythiophene-based water-gated organic field-effect transistors for biosensing, J. Mater. Chem. B, 1, 2090, 10.1039/c3tb00525a Khan, 2011, In situ antibody detection and charge discrimination using aqueous stable pentacene transistor biosensors, J. Am. Chem. Soc., 133, 2170, 10.1021/ja107088m Spector, 1969, Binding of long-chain fatty acids to bovine serum albumin, J. Lipid Res., 10, 56, 10.1016/S0022-2275(20)42649-5