Negative regulation of Janus kinases

Cell Biochemistry and Biophysics - Tập 34 - Trang 17-59 - 2001
Roy J. Duhé1, Li Hua Wang2, William L. Farrar2
1Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson
2Cytokine Molecular Mechanisms Section, Laboratory of Molecular Immunoregulation, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick

Tóm tắt

The precise regulation of both the magnitude and the duration of Janus kinase (JAK) catalytic activity is essential for the cytokine orchestration of many biological processes, and the dysregulation of JAK activity has pathological implications. Immunosuppressive disease states, such as X-linked severe combined immunodeficiency, arise from inappropriate JAK inhibition. In contrast, a limited number of cancers, primarily leukemias, result from constitutive or enhanced activation of JAK activity. JAKs are no longer implicated only in classic cytokine receptor-mediated signaling pathways, but are now also known to integrate indirectly into other receptor-mediated signal transduction processes. Therefore, an increasing number of therapeutic applications exist for biological-response modifiers that can restore aberrant JAK activity to normal levels. Exciting breakthroughs in both physiological and pharmacological methods of selective inhibition of cytokine-JAK-signal transducers and activators of transcription pathways have recently emerged in the form of suppressors of cytokine signaling (also known as cytokine-inducible SH2 protein, JAK-binding protein, or STAT-induced STAT inhibitor) proteins and novel dimethoxyquinazoline derivatives, respectively. The basis of these and other mechanisms of negative regulation of JAK activity, including the suppression of jak expression levels caused by tumor- or pathogen-derived agents, the complex interactions of JAKs with phosphatases, and the redox regulation of JAK catalytic activity, is the focus of this review.

Tài liệu tham khảo

O’Shea, J. J. (1997) Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity. 7, 1–11. Liu, K. D., Gaffen, S. L., and Goldsmith, M. A. (1998) JAK/STAT signaling by cytokine receptors. Curr. Opin. Immunol. 10, 271–278. Duhé, R. J. and Farrar, W. L. (1998) Structural and mechanistic aspects of Janus kinases: How the two-faced god wields a double-edged sword. J. Interferon Cytokine Res. 18, 1–15. Heinrich, P. C., Behrmann, I., Muller-Newen, G., Schaper, F., and Graeve, L. (1998) Interleukin-6-type cytokine signalling through the gp130/Jak/STAT pathway. Biochem. J. 334, 297–314. Marrero, M. B., Venema, V. J., Ju, H., Eaton, D. C., and Venema, R. C. (1998) Regulation of angiotensin II-induced JAK2 tyrosine phosphorylation: roles of SHP-1 and SHP-2. Am. J. Physiol 275, C1216-C1223. Mellado, M., Rodriguez-Frade, J. M., Aragay, A., del Real, G., Martin, A. M., Vila-Coro, A. J., et al. (1998) The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J. Immunol. 161, 805–813. Rodig, S. J., Meraz, M. A., White, J. M., Lampe, P. A., Riley, J. K., Arthur, C. D., et al. (1998) Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 93, 373–383. Neubauer, H., Cumano, A., Muller, M., Wu, H., Huffstadt, U., and Pfeffer, K. (1998) Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409. Parganas, E., Wang, D., Stravopodis, D., Topham, D. J., Marine, J. C., Teglund, S., et al. (1998) Jak2 is essential for signaling through a variety of cytokine receptors. Cell 93, 385–395. Nosaka, T., van Deursen, J. M., Tripp, R. A., Thierfelder, W. E., Witthuhn, B. A., McMickle, A. P., et al. (1995) Defective lymphoid development in mice lacking Jak3. Science 270, 800–802. Park, S. Y., Saijo, K., Takahashi, T., Osawa, M., Arase, H., Hirayama, N., et al. (1995) Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3, 771–782. Thomis, D. C., Gurniak, C. B., Tivol, E., Sharpe, A. H., and Berg, L. J. (1995) Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797. Karaghiosoff, M., Neubauer, H., Lassnig, C., et al. (2000) Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13, 549–560. Shimoda, K., Kato, K., Aoki, K., et al. (2000) Tyk2 plays a restricted role in IFN-α signaling, although it is required for IL-12-mediated T-cell function. Immunity 13, 561–571. Cunningham, B. C., Ultsch, M., de Vos, A. M., Mulkerrin, M. G., Clauser, K. R., and Wells, J. A. (1991) Dimerization of the extracellular domain of the human growth hormone receptor by a single hormone molecule. Science 254, 821–825. De Vos, A. M., Ultsch, M., and Kossiakoff, A. A. (1992) Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255, 306–312. Livnah, O., Stura, E. A., Middleton, S. A., Johnson, D. L., Jolliffe, L. K., and Wilson, I. A. (1999) Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990. Remy, I., Wilson, I. A., and Michnick, S. W. (1999) Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990–993. Gauzzi, M. C., Velazquez, L., McKendry, R., Mogensen, K. E., Fellous, M., and Pellegrini, S. (1996) Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J. Biol. Chem. 271, 20,494–20,500. Feng, J., Witthuhn, B. A., Matsuda, T., Kohlhuber, F., Kerr, I. M., and Ihle, J. N. (1997) Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell Biol. 17, 2497–2501. Zhou, Y. J., Hanson, E. P., Chen, Y. Q., Magnuson, K., Chen, M., Swann, P. G., et al. (1997) Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc. Natl. Acad. Sci. USA 94, 13,850–13,855. Zheng, J., Knighton, D. R., Xuong, N. H., Taylor, S. S., Sowadski, J. M., and Ten Eyck, L. F. (1993) Crystal structures of the myristylated catalytic subunit of cAMP-dependent protein kinase reveal open and closed conformation. Protein Sci. 2, 1559–1573. Adams, J. A., McGlone, M. L., Gibson, R., and Taylor, S. S. (1995) Phosphorylation modulates catalytic function and regulation in the cAMP-dependent protein kinase. Biochemistry 34, 2447–2454. Mohammadi, M., Schlessinger, J., and Hubbard, S. R. (1996) Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86, 577–587. Hubbard, S. R. (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581. Weiss, A. and Schlessinger, J. (1998) Switching signals on or off by receptor dimerization. Cell 94, 277–280. Krishnan, K., Pine, R., and Krolewski, J. J. (1997) Kinase-deficient forms of Jak1 and Tyk2 inhibit interferon alpha signaling in a dominant manner. Eur. J. Biochem. 247, 298–305. Briscoe, J., Rogers, N. C., Witthuhn, B. A., Watling, D., Harpur, A. G., Wilks, A. F., et al. (1996) Kinase-negative mutants of JAK1 can sustain interferon-gamma-inducible gene expression but not an antiviral state. EMBO J. 15, 799–809. Witthuhn, B. A., Williams, M. D., Kerawalla, H., and Uckun, F. M. (1999) Differential substrate recognition capabilities of Janus family protein kinases within the interleukin 2 receptor (IL2R) system: Jak3 as a potential molecular target for treatment of leukemias with a hyperactive Jak-Stat signaling machinery. Leuk. Lymphoma 32, 289–297. Soderling, T. R. (1990) Protein kinases. Regulation by autoinhibitory domains. J. Biol. Chem. 265, 1823–1826. Johnson, L. N., Noble, M. E., and Owen, D. J. (1996) Active and inactive protein kinases: structural basis for regulation. Cell 85, 149–158. Dennis, P. B., Pullen, N., Pearson, R. B., Kozma, S. C., and Thomas, G. (1998) Phosphorylation sites in the autoinhibitory domain participate in p70(s6k) activation loop phosphorylation. J. Biol. Chem. 273, 14,845–14,852. Smith, M. K., Colbran, R. J., Brickey, D. A., and Soderling, T. R. (1992) Functional determinants in the autoinhibitory domain of calcium/calmodulin-dependent protein kinase II. Role of His282 and multiple basic residues. J. Biol. Chem. 267, 1761–1768. Sanchez, V. E. and Carlson, G. M. (1993) Isolation of an autoinhibitory region from the regulatory beta-subunit of phosphorylase kinase. J. Biol. Chem. 268, 17,889–17,895. Goldberg, J., Nairn, A. C., and Kuriyan, J. (1996) Structural basis for the autoinhibition of calcium/calmodulin-dependent protein kinase I. Cell 84, 875–887. Hu, S. H., Lei, J. Y., Wilce, M. C., Valenzuela, M. R., Benian, G. M., Parker, M. W., and Kemp, B. E. (1994) Crystallization and preliminary X-ray analysis of the auto-inhibited twitchin kinase. J. Mol. Biol. 236, 1259–1261. Hu, S. H., Parker, M. W., Lei, J. Y., Wilce, M. C., Benian, G. M., and Kemp, B. E. (1994) Insights into autoregulation from the crystal structure of twitchin kinase. Nature 369, 581–584. Luo, H., Rose, P., Barber, D., Hanratty, W. P., Lee, S., Roberts, T. M., D’Andrea, A. D., and Dearolf, C. R. (1997) Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-Stat pathways. Mol. Cell Biol. 17, 1562–1571. Duhé, R. J. and Farrar, W. L. (1995) Characterization of active and inactive forms of the JAK2 protein-tyrosine kinase produced via the baculovirus expression vector system. J. Biol. Chem. 270, 23,084–23,089. Davis, E., Krishnan, K., Yan, H., Newcomb, E. W., and Krolewski, J. J. (1996) A mutant form of p135tyk2, an interferon-α inducible tyrosine kinase, suppresses the transformed phenotype of Daudi cells. Leukemia 10, 543–551. Conway, G., Margoliath, A., Wong-Madden, S., Roberts, R. J., and Gilbert, W. (1997) Jak1 kinase is required for cell migrations and anterior specification in zebrafish embryos. Proc. Natl. Acad. Sci. USA 94, 3082–3087. Zhuang, H., Patel, S. V., He, T. C., Niu, Z., and Wojchowski, D. M. (1994) Dominant negative effects of a carboxy-truncated Jak2 mutant on Epo- induced proliferation and Jak2 activation. Biochem. Biophys. Res. Commun. 204, 278–283. Zhuang, H., Patel, S. V., He, T. C., Sonsteby, S. K., Niu, Z., and Wojchowski, D. M. (1994). Inhibition of erythropoietin-induced mitogenesis by a kinase-deficient form of Jak2. J. Biol. Chem. 269, 21,411–21,414. Schindler, C. and Strehlow, I. (2000) Cytokines and STAT signaling. Adv. Pharmacol. 47, 113–174. Chen, X., Vinkemeier, U., Zhao, Y., Jeruzalmi, D., Darnell, J. E., Jr., and Kuriyan, J. (1998) Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93, 827–839. Becker, S., Groner, B., and Muller, C. W. (1998) Three-dimensional structure of the Stat3beta homodimer bound to DNA. Nature 394, 145–151. Akira, S. (1999) Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17, 138–146. Park, C., Li, S., Cha, E., and Schindler, C. (2000) Immune response in Stat2 knockout mice. Immunity, 13, 795–804. Noguchi, M., Yi, H., Rosenblatt, H. M., Filipovich, A. H., Adelstein, S., Modi, W. S., McBride, O. W., and Leonard, W. J. (1993) Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157. Russell, S. M., Tayebi, N., Nakajima, H., Riedy, M. C., Roberts, J. L., Aman, M. J., et al. (1995) Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800. Macchi, P., Villa, A., Giliani, S., Sacco, M. G., Frattini, A., Porta, F., et al. (1995) Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68. Cacalano, N. A., Migone, T. S., Bazan, F., Hanson, E. P., Chen, M., Candotti, F., O’Shea, J. J., and Johnston, J. A. (1999) Autosomal SCID caused by a point mutation in the N-terminus of Jak3: mapping of the Jak3-receptor interaction domain. EMBO J. 18, 1549–1558. Schumacher, R. F., Mella, P., Lalatta, F., Fiorini, M., Giliani, S., Villa, A., Candotti, F., and Notarangelo, L. D. (1999) Prenatal diagnosis of JAK3 deficient SCID. Prenat. Diagn. 19, 653–656. Candotti, F., Oakes, S. A., Johnston, J. A., Notarangelo, L. D., O’Shea, J. J., and Blaese, R. M. (1996) In vitro correction of JAK3-deficient severe combined immunodeficiency by retroviral-mediated gene transduction. J. Exp. Med. 183, 2687–2692. Bunting, K. D., Sangster, M. Y., Ihle, J. N., and Sorrentino, B. P. (1998) Restoration of lymphocyte function in Janus kinase 3-deficient mice by retroviral-mediated gene transfer. Nat. Med. 4, 58–64. Bunting, K. D., Flynn, K. J., Riberdy, J. M., Doherty, P. C., and Sorrentino, B. P. (1999) Virus-specific immunity after gene therapy in a murine model of severe combined immunodeficiency. Proc. Natl. Acad. Sci. USA 96, 232–237. Zhuang, H., Niu, Z., He, T. C., Patel, S. V., and Wojchowski, D. M. (1995) Erythropoietin-dependent inhibition of apoptosis is supported by carboxyl-truncated receptor forms and blocked by dominant-negative forms of Jak2. J. Biol. Chem. 270, 14,500–14,504. Li, S., Labrecque, S., Gauzzi, M. C., Cuddihy, A. R., Wong, A. H., Pellegrini, S., Matlashewski, G. J., and Koromilas, A. E. (1999) The Human papilloma virus (HPV)-18 E6 oncoprotein physically associates with tyk2 and impairs jak-STAT activation by interferon-alpha. Oncogene 18, 5727–5737. Miller, D. M., Rahill, B. M., Boss, J. M., Lairmore, M. D., Durbin, J. E., Waldman, J. W., and Sedmak, D. D. (1998) Human cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J. Exp. Med. 187, 675–683. Lee, E. H. and Rikihisa, Y. (1998) Protein kinase A-mediated inhibition of gamma interferon-induced tyrosine phosphorylation of Janus kinases and latent cytoplasmic transcription factors in human monocytes by Ehrlichia chaffeensis. Infect. Immun. 66, 2514–2520. David, M., Petricoin, E., III, and Larner, A. C. (1996) Activation of protein kinase A inhibits interferon induction of the Jak/Stat pathway in U266 cells. J. Biol. Chem. 271, 4585–4588. Nandan, D. and Reiner, N. E. (1995) Attenuation of gamma interferon-induced tyrosine phosphorylation in mononuclear phagocytes infected with Leishmania donovania: selective inhibition of signaling through Janus kinases and Stat1. Infect. Immun. 63, 4495–4500. Blanchette, J., Racette, N., Faure, R., Siminovitch, K. A., and Olivier, M. (1999) Leishmania-induced increases in activation of macrophage SHP-1 tyrosine phosphatase are associated with impaired IFN-gamma-triggered JAK2 activation. Eur. J. Immunol. 29, 3737–3744. Ben Efraim, S. (1999) One hundred years of cancer immunotherapy: a critical appraisal. Tumor Biol. 20, 1–24. Rosenberg, S. A. (1999) A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287. Kolenko, V., Wang, Q., Riedy, M. C., O’Shea, J., Ritz, J., Cathcart, M. K., et al. (1997) Tumor-induced suppression of T lymphocyte proliferation coincides with inhibition of Jak3 expression and IL-2 receptor signaling: role of soluble products from human renal cell carcinomas. J. Immunol. 159, 3057–3067. Kolenko, V., Rayman, P., Roy, B., Cathcart, M. K., O’Shea, J., Tubbs, R., et al. (1999) Downregulation of JAK3 protein levels in T lymphocytes by prostaglandin E2 and other cyclic adenosine monophosphate-elevating agents: impact on interleukin-2 receptor signaling pathway. Blood 93, 2308–2318. Meydan, N., Grunberger, T., Dadi, H., Shahar, M., Arpaia, E., Lapidot, Z., et al. (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379, 645–648. Lacronique, V., Boureux, A., Valle, V. D., Poirel, H., Quang, C. T., Mauchauffe, M., et al. (1997) A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312. Peeters, P., Raynaud, S. D., Cools, J., Wlodarska, I., Grosgeroge, J., Philip, P., et al. (1997) Fusion of TEL, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of t(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 90, 2535–2540. Ho, J. M., Beattie, B. K., Squire, J. A., Frank, D. A., and Barber, D. L. (1999) Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak-Stat signaling. Blood 93, 4354–4364. Schwaller, J., Frantsve, J., Aster, J., Williams, I. R., Tomasson, M. H., Ross, T. S., (1998) Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J. 17, 5321–5333. Zhang, Q., Nowak, I., Vonderheid, E. C., Rook, A. H., Kadin, M. E., Nowell, P. C., Shaw, L. M., and Wasik, M. A. (1996) Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc. Natl. Acad. Sci. USA 93, 9148–9153. Liu, R. Y., Fan, C., Garcia, R., Jove, R., and Zuckerman, K. S. (1999) Constitutive activation of the JAK2/STAT5 signal transduction pathway correlates with growth factor independence of megakaryocytic leukemic cell lines. Blood 93, 2369–2379. Harrison, D. A., Binari, R., Nahreini, T. S., Gilman, M., and Perrimon, N. (1995) Activation of a Drosophila Janus kinase (JAK) causes hematopoietic neoplasia and developmental defects. EMBO J. 14, 2857–2865. Smith, M. R., Duhé, R. J., Liu, Y., and Farrar, W. L. (1997) Microinjected cDNA encoding JAK2 protein-tyrosine kinase induces DNA synthesis in NIH 3T3 cells. FEBS Lett. 408, 327–330. Chaturvedi, P., Reddy, M. V., and Reddy, E. P. (1998) Src kinases and not JAKs activate STATs during IL-3 induced myeloid cell proliferation. Oncogene 16, 1749–1758. Campbell, G. S., Yu, C.-L., Jove, R., and Carter-Su, C. (1997) Constitutive activation of JAK1 in Src-transformed cells. J. Biol. Chem. 272, 2591–2594. Murakami, Y., Nakano, S., Niho, Y., Hamasaki, N., and Izuhara, K. (1998) Constitutive activation of Jak-2 and Tyk-2 in a v-Src-transformed human gallbladder adenocarcinoma cell line. J. Cell Physiol 175, 220–228. Sayeski, P. P., Ali, M. S., Hawks, K., Frank, S. J., and Bernstein, K. E. (1999) The angiotensin II-dependent association of Jak2 and c-Src requires the N-terminus of Jak2 and the SH2 domain of c-Src. Circ. Res. 84, 1332–1338. Yu, C. L., Jove, R., and Burakoff, S. J. (1997) Constitutive activation of the Janus kinase-STAT pathway in T lymphoma overexpressing the Lck protein tyrosine kinase. J. Immunol. 159, 5206–5210. Danial, N. N., Pernis, A., and Rothman, P. B. (1995) Jak-STAT signaling induced by the v-abl oncogene. Science 269, 1875–1877. Shuai, K., Halpern, J., ten Hoeve, J., Rao, X., and Sawyers, C. L. (1996) Constitutive activation of STAT5 by the BCR-ABL oncogene in chronic myelogenous leukemia. Oncogene 13, 247–254. Zong, C., Yan, R., August, A., Darnell, J. E., Jr., and Hanafusa, H. (1996) Unique signal transduction of Eyk: constitutive stimulation of the JAK-STAT pathway by an oncogenic receptortype tyrosine kinase. EMBO J. 15, 4515–4525. Migone, T. S., Lin, J. X., Cereseto, A., Mulloy, J. C., O’Shea, J. J., Franchini, G., and Leonard, W. J. (1995) Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science 269, 79–81. Xu, X., Kang, S. H., Heidenreich, O., Okerholm, M., O’Shea, J. J., and Nerenberg, M. I. (1995) Constitutive activation of different Jak tyrosine kinases in human T cell leukemia virus type 1 (HTLV-1) tax protein or virustransformed cells. J. Clin. Invest 96, 1548–1555. Zhang, Q., Lee, B., Korecka, M., Li, G., Weyland, C., Eck, S., et al. (1999) Differences in phosphorylation of the IL-2R associated JAK/STAT proteins between HTLV-I(+), IL-2-independent and IL-2-dependent cell lines and uncultured leukemic cells from patients with adult T-cell lymphoma/leukemia. Leuk. Res. 23, 373–384. Takemoto, S., Mulloy, J. C., Cereseto, A., Migone, T. S., Patel, B. K., Matsuoka, M., et al. (1997) Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc. Natl. Acad. Sci. USA 94, 13,897–13,902. Migone, T. S., Cacalano, N. A., Taylor, N., Yi, T., Waldmann, T. A., and Johnston, J. A. (1998) Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T- lymphotropic virus type I-transformed T cells. Proc. Natl. Acad. Sci. USA 95, 3845–3850. Murata, T. and Puri, R. K. (1997) Comparison of IL-13- and IL-4-induced signaling in EBV-immortalized human B cells. Cell Immunol. 175, 33–40. Gires, O., Kohlhuber, F., Kilger, E., Baumann, M., Kieser, A., Kaiser, C., et al. (1999) Latent membrane protein 1 of Epstein-Barr virus interacts with JAK3 and activates STAT proteins. EMBO J. 18, 3064–3073. Lee, Y. H. and Yun, Y. (1998) HBx protein of hepatitis B virus activates Jak1-STAT signaling. J. Biol. Chem. 273, 25,510–25,515. Lamb, P., Haslam, J., Kessler, L., Seidel, H. M., Stein, R. B., and Rosen, J. (1994) Rapid activation of the interferon-gamma signal transduction pathway by inhibitors of tyrosine phosphatases. J. Interferon Res. 14, 365–373. Haque, S. J., Wu, Q., Kammer, W., Friedrich, K., Smith, J. M., Kerr, I. M., Stark, G. R., and Williams, B. R. (1997) Receptor-associated constitutive protein tyrosine phosphatase activity controls the kinase function of JAK1. Proc. Natl. Acad. Sci. USA 94, 8563–8568. Klingmüller, U., Lorenz, U., Cantley, L. C., Neel, B. G., and Lodish, H. F. (1995) Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 80, 729–738. Jiao, H., Berrada, K., Yang, W., Tabrizi, M., Platanias, L. C., and Yi, T. (1996) Direct association with and dephosphorylation of Jak2 kinase by the SH2-domain-containing protein tyrosine phosphatase SHP-1. Mol. Cell Biol. 16, 6985–6992. Stahl, N., Farruggella, T. J., Boulton, T. G., Zhong, Z., Darnell, J. E., Jr., and Yancopoulos, G. D. (1995) Choice of STATs and other substrates specified by modular tyrosine- based motifs in cytokine receptors. Science 267, 1349–1353. Yetter, A., Uddin, S., Krolewski, J. J., Jiao, H., Yi, T., and Platanias, L. C. (1995) Association of the interferon-dependent tyrosine kinase Tyk-2 with the hematopoietic cell phosphatase. J. Biol. Chem. 270, 18,179–18,182. David, M., Chen, H. E., Goelz, S., Larner, A. C., and Neel, B. G. (1995) Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol. Cell Biol. 15, 7050–7058. Haque, S. J., Harbor, P., Tabrizi, M., Yi, T., and Williams, B. R. (1998) Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J. Biol. Chem. 273, 33,893–33,896. Tabrizi, M., Yang, W., Jiao, H., DeVries, E. M., Platanias, L. C., Arico, M., and Yi, T. (1998) Reduced Tyk2/SHP-1 interaction and lack of SHP-1 mutation in a kindred of familial hemophagocytic lymphohistiocytosis. Leukemia 12, 200–206. Ram, P. A. and Waxman, D. J. (1997) Interaction of growth hormone-activated STATs with SH2-containing phosphotyrosine phosphatase SHP-1 and nuclear JAK2 tyrosine kinase. J. Biol. Chem. 272, 17,694–17,702. Lobie, P. E., Ronsin, B., Silvennoinen, O., Haldosen, L. A., Norstedt, G., and Morel, G. (1996) Constitutive nuclear localization of Janus kinases 1 and 2. Endocrinology 137, 4037–4045. Bousquet, C., Susini, C., and Melmed, S. (1999) Inhibitory roles for SHP-1 and SOCS-3 following pituitary proopiomelanocortin induction by leukemia inhibitory factor. J. Clin. Invest 104, 1277–1285. Tidow, N., Kasper, B., and Welte, K. (1999) SH2-containing protein tyrosine phosphatases SHP-1 and SHP-2 are dramatically increased at the protein level in neutrophils from patients with severe congenital neutropenia (Kostmann’s syndrome). Exp. Hematol. 27, 1038–1045. Raupich, P., Kasper, B., Tidow, N., and Welte, K. (1995) The protein tyrosine kinase JAK2 is activated in neutrophils from patients with severe congenital neutropenia. Blood 86, 4500–4505. Berchtold, S., Volarevic, S., Moriggl, R., Mercep, M., and Groner, B. (1998) Dominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 (janus kinase 2) and induction of Stat5 (signal transducer and activator of transcription 5)-dependent transcription. Mol. Endocrinol. 12, 556–567. Gadina, M., Stancato, L. M., Bacon, C. M., Larner, A. C., and O’Shea, J. J. (1998) Involvement of SHP-2 in multiple aspects of IL-2 signaling: evidence for a positive regulatory role. J. Immunol. 160, 4657–4661. Maegawa, H., Kashiwagi, A., Fujita, T., Ugi, S., Hasegawa, M., Obata, T., et al. (1996) SHPTP2 serves adapter protein linking between Janus kinase 2 and insulin receptor substrates. Biochem. Biophys. Res. Commun. 228, 122–127. Yin, T., Shen, R., Feng, G. S., and Yang, Y. C. (1997) Molecular characterization of specific interactions between SHP-2 phosphatase and JAK tyrosine kinases. J. Biol. Chem. 272, 1032–1037. You, M., Yu, D. H., and Feng, G. S. (1999) Shp-2 tyrosine phosphatase functions as a negative regulator of the interferon-stimulated Jak/STAT pathway. Mol. Cell Biol. 19, 2416–2424. Li, C. and Friedman, J. M. (1999) Leptin receptor activation of SH2 domain containing protein tyrosine phosphatase 2 modulates Ob receptor signal transduction. Proc. Natl. Acad. Sci. USA 96, 9677–9682. Nicholson, S. E. and Hilton, D. J. (1998) The SOCS proteins: a new family of negative regulators of signal transduction. J. Leukoc. Biol. 63, 665–668. Starr, R. and Hilton, D. J. (1998) SOCS: suppressors of cytokine signalling. Int. J. Biochem. Cell Biol. 30, 1081–1085. Alexander, W. S., Starr, R., Metcalf, D., Nicholson, S. E., Farley, A., Elefanty, A. G., et al. (1999) Suppressors of cytokine signaling (SOCS): negative regulators of signal transduction. J. Leukoc. Biol. 66, 588–592. Metcalf, D. (1999) The SOCS-1 story. Exp. Hematol. 27, 1715–1723. Gisselbrecht, S. (1999) The CIS/SOCS proteins: a family of cytokine-inducible regulators of signaling. Eur. Cytokine Netw. 10, 463–470. Yoshimura, A., Ohkubo, T., Kiguchi, T., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., Hara, T., and Miyajima, A. (1995) A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 14, 2816–2826. Matsumoto, A., Masuhara, M., Mitsui, K., Yokouchi, M., Ohtsubo, M., Misawa, H., Miyajima, A., and Yoshimura, A. (1997) CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89, 3148–3154. Endo, T. A., Masuhara, M., Yokouchi, M., Suzuki, R., Sakamoto, H., Mitsui, K., et al. (1997) A new protein containing an SH2 domain that inhibits JAK kinases. Nature 387, 921–924. Naka, T., Narazaki, M., Hirata, M., Matsumoto, T., Minamoto, S., Aono, A., et al. (1997) Structure and function of a new STAT-induced STAT inhibitor. Nature 387, 924–929. Starr, R., Willson, T. A., Viney, E. M., Murray, L. J., Rayner, J. R., Jenkins, B. J., et al. (1997) A family of cytokine-inducible inhibitors of signalling. Nature 387, 917–921. Masuhara, M., Sakamoto, H., Matsumoto, A., Suzuki, R., Yasukawa, H., Mitsui, K., et al. (1997) Cloning and characterization of novel CIS family genes. Biochem. Biophys. Res. Commun. 239, 439–446. Minamoto, S., Ikegame, K., Ueno, K., Narazaki, M., Naka, T., Yamamoto, H., et al. (1997) Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem. Biophys. Res. Commun. 237, 79–83. Hilton, D. J., Richardson, R. T., Alexander, W. S., Viney, E. M., Willson, T. A., Sprigg, N. S., et al. (1998) Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc. Natl. Acad. Sci. USA 95, 114–119. Starr, R., Metcalf, D., Elefanty, A. G., Brysha, M., Willson, T. A., Nicola, N. A., Hilton, D. J., and Alexander, W. S. (1998) Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc. Natl. Acad. Sci. USA 95, 14,395–14,399. Naka, T., Matsumoto, T., Narazaki, M., Fujimoto, M., Morita, Y., Ohsawa, Y., et al. (1998) Accelerated apoptosis of lymphocytes by augmented induction of Bax in SSI-1 (STAT-induced STAT inhibitor-1) deficient mice. Proc. Natl. Acad. Sci. USA 95, 15,577–15,582. Alexander, W. S., Starr, R., Fenner, J. E., Scott, C. L., Handman, E., Sprigg, N. S., et al. (1999) SOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell 98, 597–608. Marine, J. C., Topham, D. J., McKay, C., Wang, D., Parganas, E., Stravopodis, D., Yoshimura, A., and Ihle, J. N. (1999) SOCS1 deficiency causes a lymphocyte-dependent perinatal lethality. Cell 98, 609–616. Young, H. A., Klinman, D. M., Reynolds, D. A., Grzegorzewski, K. J., Nii, A., Ward, J. M., et al. (1997) Bone marrow and thymus expression of interferon-gamma results in severe B-cell lineage reduction, T-cell lineage alterations, and hematopoietic progenitor deficiencies. Blood 89, 583–595. Yasukawa, H., Misawa, H., Sakamoto, H., Masuhara, M., Sasaki, A., Wakioka, T., et al. (1999) The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J. 18, 1309–1320. Narazaki, M., Fujimoto, M., Matsumoto, T., Morita, Y., Saito, H., Kajita, T., et al. (1998) Three distinct domains of SSI-1/SOCS-1/JAB protein are required for its suppression of interleukin 6 signaling. Proc. Natl. Acad. Sci. USA 95, 13,130–13,134. Nicholson, S. E., Willson, T. A., Farley, A., Starr, R., Zhang, J. G., Baca, M., et al. (1999) Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J. 18, 375–385. Ohya, K., Kajigaya, S., Yamashita, Y., Miyazato, A., Hatake, K., Miura, Y., et al. (1997) SOCS-1/JAB/SSI-1 can bind to and suppress Tec protein-tyrosine kinase. J. Biol. Chem. 272, 27,178–27,182. De Sepulveda, P., Okkenhaug, K., Rose, J. L., Hawley, R. G., Dubreuil, P., and Rottapel, R. (1999) Socs1 binds to multiple signalling proteins and suppresses steel factor-dependent proliferation. EMBO J. 18, 904–915. Sakamoto, H., Yasukawa, H., Masuhara, M., Tanimura, S., Sasaki, A., Yuge, K., et al. (1998) A janus kinase inhibitor, JAB, is an interferon-γ-inducible gene and confers resistance to interferons. Blood 92, 1668–1676. Dickensheets, H. L. and Donnelly, R. P. (1999) Inhibition of IL-4-inducible gene expression in human monocytes by type I and type II interferons. J. Leukoc. Biol. 65, 307–312. Losman, J. A., Chen, X. P., Hilton, D., and Rothman, P. (1999) SOCS-1 is a potent inhibitor of IL-4 signal transduction. J. Immunol. 162, 3770–3774. Venkataraman, C., Leung, S., Salvekar, A., Mano, H., and Schindler, U. (1999) Repression of IL-4-induced gene expression by IFN-gamma requires Stat1 activation. J. Immunol. 162, 4053–4061. Dickensheets, H. L., Venkataraman, C., Schindler, U., and Donnelly, R. P. (1999) Interferons inhibit activation of STAT6 by interleukin 4 in human monocytes by inducing SOCS-1 gene expression. Proc. Natl. Acad. Sci. USA 96, 10,800–10,805. Bjørbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E., and Flier, J. S. (1998) Identification of SOCS-3 as a potential mediator of central leptin resistance. Mol. Cell 1, 619–625. Emilsson, V., Arch, J. R., de Groot, R. P., Lister, C. A., and Cawthorne, M. A. (1999) Leptin treatment increases suppressors of cytokine signaling in central and peripheral tissues. FEBS Lett. 455, 170–174. Bjørbaek, C., El Haschimi, K., Frantz, J. D., and Flier, J. S. (1999) The role of SOCS-3 in leptin signaling and leptin resistance. J. Biol. Chem. 274, 30,059–30,065. Bjørbaek, C., Elmquist, J. K., El Haschimi, K., Kelly, J., Ahima, R. S., Hileman, S., and Flier, J. S. (1999) Activation of SOCS-3 messenger ribonucleic acid in the hypothalamus by ciliary neurotrophic factor. Endocrinology 140, 2035–2043. Auernhammer, C. J., Chesnokova, V., Bousquet, C., and Melmed, S. (1998) Pituitary corticotroph SOCS-3: novel intracellular regulation of leukemia-inhibitory factor-mediated proopiomelanocortin gene expression and adrenocorticotropin secretion. Mol. Endocrinol. 12, 954–961. Auernhammer, C. J. and Melmed, S. (1999) Interleukin-11 stimulates proopiomelanocortin gene expression and adrenocorticotropin secretion in corticotroph cells: evidence for a redundant cytokine network in the hypothalamo-pituitary-adrenal axis. Endocrinology 140, 1559–1566. Adams, T. E., Hansen, J. A., Starr, R., Nicola, N. A., Hilton, D. J., and Billestrup, N. (1998) Growth hormone preferentially induces the rapid, transient expression of SOCS-3, a novel inhibitor of cytokine receptor signaling. J. Biol. Chem. 273, 1285–1287. Ram, P. A. and Waxman, D. J. (1999) SOCS/CIS protein inhibition of growth hormone-stimulated STAT5 signaling by multiple mechanisms. J. Biol. Chem. 274, 35,553–35,561. Favre, H., Benhamou, A., Finidori, J., Kelly, P. A., and Edery, M. (1999) Dual effects of suppressor of cytokine signaling (SOCS-2) on growth hormone signal transduction. FEBS Lett. 453, 63–66. Stoiber, D., Kovarik, P., Cohney, S., Johnston, J. A., Steinlein, P., and Decker, T. (1999) Lipopolysaccharide induces in macrophages the synthesis of the suppressor of cytokine signaling 3 and suppresses signal transduction in response to the activating factor IFN-gamma. J. Immunol. 163, 2640–2647. Ito, S., Ansari, P., Sakatsume, M., Dickensheets, H., Vazquez, N., Donnelly, R. P., Larner, A. C., and Finbloom, D. S. (1999) Interleukin-10 inhibits expression of both interferon α and interferon-γ-induced genes by supressing tyrosine phosphorylation of STAT1. Blood 93, 1456–1463. Cassatella, M. A., Gasperini, S., Bovolenta, C., Calzetti, F., Vollebregt, M., Scapini, P., et al. (1999) Interleukin-10 (IL-10) selectively enhances CIS3/SOCS3 mRNA expression in human neutrophils: evidence for an IL-10-induced pathway that is independent of STAT protein activation. Blood 94, 2880–2889. Cohney, S. J., Sanden, D., Cacalano, N. A., Yoshimura, A., Mui, A., Migone, T. S., and Johnston, J. A. (1999) SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol. Cell Biol. 19, 4980–4988. Marine, J. C., McKay, C., Wang, D., Topham, D. J., Parganas, E., Nakajima, H., et al. (1999) SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 98, 617–627. Dey, B. R., Spence, S. L., Nissley, P., and Furlanetto, R. W. (1998) Interaction of human suppressor of cytokine signaling (SOCS)-2 with the insulin-like growth factor-I receptor. J. Biol. Chem. 273, 24,095–24,101. Song, M. M. and Shuai, K. (1998) The suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J. Biol. Chem. 273, 35,056–35,062. Yu, C. L. and Burakoff, S. J. (1997) Involvement of proteasomes in regulating Jak-STAT pathways upon interleukin-2 stimulation. J. Biol. Chem. 272, 14,017–14,020. Gebert, C. A., Park, S. H., and Waxman, D. J. (1999) Down-regulation of liver JAK2-STAT5b signaling by the female plasma pattern of continuous growth hormone stimulation. Mol. Endocrinol. 13, 213–227. Gebert, C. A., Park, S. H., and Waxman, D. J. (1999) Termination of growth hormone pulse-induced STAT5b signaling. Mol. Endocrinol. 13, 38–56. Callus, B. A. and Mathey-Prevot, B. (1998) Interleukin-3-induced activation of the JAK/STAT pathway is prolonged by proteasome inhibitors. Blood 91, 3182–3192. Verdier, F. Chrétien, S., Muller, O., Vrlet, P., Yoshimura, A., Gisselbrecht, S., Lacombe, C., and Mayeux, P. (1998) Proteasomes regulate erythropoietin receptor and signal transducer and activator of transcription 5 (STAT5) activation. J. Biol. Chem. 273, 28,185–28,190. Kamura, T., Sato, S., Haque, D., Liu, L., Kaelin, W. G., Jr., Conaway, R. C., and Conaway, J. W. (1998) The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 12, 3872–3881. Zhang, J. -G., Farley, A., Nicholson, S. E., Willson, T. A., Zugaro, L. M., Simpson, R. J., et al. (1999) The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc. Natl. Acad. Sci. USA 96, 2071–2076. Yokouchi, M., Suzuki, R., Masuhara, M., Komiya, S., Inoue, A., and Yoshimura, A. (1997) Cloning and characterization of APS, an adaptor molecule containing PH and SH2 domains that is tyrosine phosporylated upon B cell receptor stimulation. Oncogene 15, 7–15. Wakioka, T., Sasaki, A., Mitsui, K., Yokouchi, M., Inoue, A., Komiya, S., and Yoshimura, A. (1999) APS, an adaptor protein containing Pleckstrin homology (PH) and Src homology-2 (SH2) domains inhibits the JAK-STAT pathway in collaboration with c-Cbl. Leukemia 13, 760–767. Rui, L., Mathews, L. S., Hotta, K., Gustafson, T. A., and Carter-Su, C. (1997) Identification of SH2-Bβ as a substrate of the tyrosine kinase JAK2 involved in growth hormone signaling. Mol. Cell. Biol. 17, 6633–6644. Rui, L. and Carter-Su, C. (1999) Identification of SH2-Bβ as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc. Natl. Acad. Sci. USA 96, 7172–7177. Bright, J. J., Kerr, L. D., and Sriram, S. (1997) TGF-beta inhibits IL-2-induced tyrosine phosphorylation and activation of Jak-1 and Stat 5 in T lymphocytes. J. Immunol. 159, 175–183. Bright, J. J. and Sriram, S. (1998) TGF-beta inhibits IL-12-induced activation of Jak-STAT pathway in T lymphocytes. J. Immunol. 161, 1772–1777. Sudarshan, C., Galon, J., Zhou, Y., and O’Shea, J. J. (1999) TGF-beta does not inhibit IL-12- and IL-2-induced activation of Janus kinases and STATs. J. Immunol. 162, 2974–2981. Han, H. S., Jun, H. S., Utsugi, T., and Yoon, J. W. (1997) Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice. J. Autoimmun. 10, 299–307. Pardoux, C., Ma, X., Gobert, S., Pellegrini, S., Mayeux, P., Gay, F., Trinchieri, G., and Chouaib, S. (1999) Downregulation of interleukin-12 (IL-12) responsiveness in human T cells by transforming growth factor-beta: relationship with IL-12 signaling. Blood 93, 1448–1455. Pazdrak, K., Justement, L., and Alam, R. (1995) Mechanism of inhibition of eosinophil activation by transforming growth factor-beta. Inhibition of Lyn, MAP, Jak2 kinases and STAT1 nuclear factor. J. Immunol. 155, 4454–4458. Nandan, D. and Reiner, N. E. (1997) TGF-beta attenuates the class II transactivator and reveals an accessory pathway of IFN-gamma action. J. Immunol. 158, 1095–1101. Panek, R. B., Lee, Y. J., and Benveniste, E. N. (1995) TGF-beta suppression of IFN-gamma-induced class II MHC gene expression does not involve inhibition of phosphorylation of JAK1, JAK2, or signal transducers and activators of transcription, or modification of IFN-gamma enhanced factor X expression. J. Immunol. 154, 610–619. Duhé, R. J., Evans, G. A., Erwin, R. A., Kirken, R. A., Cox, G. W., and Farrar, W. L. (1998) Nitric oxide and thiol redox regulation of Janus kinase activity. Proc. Natl. Acad. Sci. USA 95, 126–131. Bingisser, R. M., Tilbrook, P. A., Holt, P. G., and Kees, U. R. (1998) Macrophage-derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/STAT5 signaling pathway. J. Immunol. 160, 5729–5734. Mills, C. D. (1991) Molecular basis of “suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J. Immunol. 146, 2719–2723. Albina, J. E., Abate, J. A., and Henry, W. L., Jr. (1991) Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J. Immunol. 147, 144–148. Taylor-Robinson, A. W., Liew, F. Y., Severn, A., Xu, D., McSorley, S. J., Garside, P., Padron, J., and Phillips, R. S. (1994) Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. Eur. J. Immunol. 24, 980–984. Lejeune, P., Lagadec, P., Onier, N., Pinard, D., Ohshima, H., and Jeannin, J. F. (1994) Nitric oxide involvement in tumor-induced immunosuppression. J. Immunol. 152, 5077–5083. Yamauchi, A., Masutani, H., Tagaya, Y., Wakasugi, N., Mitsui, A., Nakamura, H., et al. (1992) Lymphocyte transformation and thiol compounds: the role of ADF/thioredoxin as an endogenous reducing agent. Mol. Immunol. 29, 263–270. Iwata, S., Hori, T., Sato, N., Ueda-Taniguchi, Y., Yamabe, T., Nakamura, H., Masutani, H., and Yodoi, J. (1994) Thiol-mediated redox regulation of lymphocyte proliferation. Possible involvement of adult T cell leukemia-derived factor and glutathione in transferrin receptor expression. J. Immunol. 152, 5633–5642. Yamauchi, A. and Bloom, E. T. (1993) Requirement of thiol compounds as reducing agents for IL-2-mediated induction of LAK activity and proliferation of human NK cells. J. Immunol. 151, 5535–5544. Carballo, M., Conde, M., El Bekay, R., Martin-Nieto, J., Camacho, M. J., Monteseirin, J., et al. (1999) Oxidative stress triggers STAT3 tyrosine phosphorylation and nuclear translocation in human lymphocytes. J. Biol. Chem. 274, 17,580–17,586. Simon, A. R., Rai, U., Fanburg, B. L., and Cochran, B. H. (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol 275, C1640-C1652. Fauman, E. B. and Saper, M. A. (1996) Structure and function of the protein tyrosine phosphatases. Trends Biochem. Sci. 21, 413–417. Pannifer, A. D., Flint, A. J., Tonks, N. K., and Barford, D. (1998) Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by x-ray crystallography. J. Biol. Chem. 273, 10,454–10,462. Abe, J. and Berk, B. C. (1999) Fyn and JAK2 mediate Ras activation by reactive oxygen species. J. Biol. Chem. 274, 21,003–21,010. Radi, R., Beckman, J. S., Bush, K. M., and Freeman, B. A. (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J. Biol. Chem. 266, 4244–4250. Levitzki, A. and Gazit, A. (1995) Tyrosine kinase inhibition: an approach to drug development. Science 267, 1782–1788. Lawrence, D. S. and Niu, J. (1998) Protein kinase inhibitors: the tyrosine-specific protein kinases. Pharmacol. Ther. 77, 81–114. Fiorucci, G., Percario, Z. A., Marcolin, C., Coccia, E. M., Affabris, E., and Romeo, G. (1995) Inhibition of protein phosphorylation modulates expression of the Jak family protein tyrosine kinases. J. Virol. 69, 5833–5837. Elder, R. T., Xu, X., Williams, J. W., Gong, H., Finnegan, A., and Chong, A. S. (1997) The immunosuppressive metabolite of leflunomide, A77 1726, affects murine T cells through two biochemical mechanisms. J. Immunol. 159, 22–27. Siemasko, K., Chong, A. S., Jack, H. M., Gong, H., Williams, J. W., and Finnegan, A. (1998) Inhibition of JAK3 and STAT6 tyrosine phosphorylation by the immunosuppressive drug leflunomide leads to a block in IgG1 production. J. Immunol. 160, 1581–1588. Wasik, M. A., Nowak, I., Zhang, Q., and Shaw, L. M. (1998) Suppression of proliferation and phosphorylation of Jak3 and STAT5 in malignant T-cell lymphoma cells by derivatives of octylamino-undecyl-dimethylxanthine. Leuk. Lymphoma 28, 551–560. Osherov, N., Gazit, A., Gilon, C., and Levitzki, A. (1993) Selective inhibition of the epidermal growth factor and HER2/neu receptors by tyrphostins. J. Biol. Chem. 268, 11,134–11,142. Sharfe, N., Dadi, H. K., and Roifman, C. M. (1995) JAK3 protein tyrosine kinase mediates interleukin-7-induced activation of phosphatidylinositol-3′ kinase. Blood 86, 2077–2085. Ali, M. S., Sayeski, P. P., Safavi, A., Lyles, M., and Bernstein, K. E. (1998) Janus kinase 2 (JAK2) must be catalytically active to associate with the AT1 receptor in response to angiotensin II. Biochem. Biophys. Res. Commun. 249, 672–677. Miike, S., Nakao, A., Hiraguri, M., Kurasawa, K., Saito, Y., and Iwamoto, I. (1999) Involvement of JAK2, but not PI 3-kinase/Akt and MAP kinase pathways, in anti-apoptotic signals of GM-CSF in human eosinophils. J. Leukoc. Biol. 65, 700–706. Simon, H. -U., Yousefi, S., Dibbert, B., Levi-Schaffer, F., and Blaser, K. (1997) Anti-apoptotic signals of granulocyte-macrophage colony-stimulating factor are transduced via Jak2 tyrosine kinase in eosinophils. Eur. J. Immunol. 27, 3536–3539. Kirken, R. A., Erwin, R. A., Taub, D., Murphy, W. J., Behbod, F., Wang, L., Pericle, F., and Farrar, W. L. (1999) Tyrphostin AG-490 inhibits cytokine-mediated JAK3/STAT5a/b signal transduction and cellular proliferation of antigen-activated human T cells. J. Leukoc. Biol. 65, 891–899. Wang, L. H., Kirken, R. A., Erwin, R. A., Yu, C. R., and Farrar, W. L. (1999) JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T cell response. J. Immunol. 162, 3897–3904. Bright, J. J., Du, C., and Sriram, S. (1999) Tyrphostin B42 inhibits IL-12-induced tyrosine phosphorylation and activation of Janus kinase-2 and prevents experimental allergic encephalomyelitis. J. Immunol. 162, 6255–6262. Nielsen, M., Kaltoft, K., Nordahl, M., Röpke, C., Geisler, C., Mustelin, T., et al. (1997) Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoldes: Tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc. Natl. Acad. Sci. USA 94, 6764–6769. Constantin, G., Brocke, S., Izikson, A., Laudanna, C., and Butcher, E. C. (1998) Tyrphostin AG490, a tyrosine kinase inhibitor, blocks actively induced experimental autoimmune encephalomyelitis. Eur. J. Immunol. 28, 3523–3529. Constantin, G., Laudanna, C., Brocke, S., and Butcher, E. C. (1999) Inhibition of experimental autoimmune encephalomyelitis by a tyrosine kinase inhibitor. J. Immunol. 162, 1144–1149. Goodman, P. A., Niehoff, L. B., and Uckun, F. M. (1998) Role of tyrosine kinases in induction of the c-jun proto-oncogene in irradiated B-lineage lymphoid cells. J. Biol. Chem. 273, 17742–17748. Sudbeck, E. A., Liu, X. P., Narla, R. K., Mahajan, S., Ghosh, S., Mao, C., and Uckun, F. M. (1999) Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin. Cancer Res. 5, 1569–1582. Uckun, F. M., Ek, O., Liu, X. P., and Chen, C. L. (1999) In vivo toxicity and pharmacokinetic features of the janus kinase 3 inhibitor WHI-P131 [4-(4′hydroxyphenyl)-amino-6,7-dimethoxyquinazoline. Clin. Cancer Res. 5, 2954–2962. Malaviya, R. and Uckun, F. M. (1999) Genetic and biochemical evidence for a critical role of Janus kinase (JAK)-3 in mast cell-mediated type I hypersensitivity reactions. Biochem. Biophys. Res. Commun. 257, 807–813. Malaviya, R., Zhu, D., Dibirdik, I., and Uckun, F. M. (1999) Targeting Janus kinase 3 in mast cells prevents immediate hypersensitivity reactions and anaphylaxis. J. Biol. Chem. 274, 27,028–27,038.