Robot Kim và Sinh Thiết: Tổng Quan

Current Robotics Reports - Tập 2 Số 1 - Trang 73-84
Françoise J. Siepel1, Bogdan Mihai Maris2, Marcel K. Welleweerd1, Vincent Groenhuis1, Paolo Fiorini2, Stefano Stramigioli3
1Robotics and Mechatronics, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
2Department of Computer Science, University of Verona, Verona, Italy
3Biomechatronics and Energy-Efficient Robotics Lab, ITMO University, Saint Petersburg, Russia

Tóm tắt

Tóm tắt Mục đích của bài tổng quan

Công nghệ robot là một lĩnh vực đang phát triển nhanh chóng, và việc áp dụng nó trong chăm sóc sức khỏe có thể mang lại nhiều lợi ích cho thực hành lâm sàng. Đặc biệt, những ứng dụng phụ thuộc vào độ chính xác và sự chính xác của bác sĩ chẩn đoán hình ảnh, chẳng hạn như các can thiệp xuyên da, có thể thu lợi. Bài báo này cung cấp một cái nhìn tổng quan về các giải pháp hỗ trợ robot gần đây trong lĩnh vực can thiệp xuyên da.

Những phát hiện gần đây

Các can thiệp xuyên da tương đối đơn giản và chất lượng của quy trình tăng lên rất nhiều khi áp dụng công nghệ robot do độ chính xác và sự chính xác được cải thiện. Thành công của quy trình phụ thuộc nhiều vào khả năng kết hợp hình ảnh trước và trong phẫu thuật, vì việc ước lượng chính xác vị trí mục tiêu hiện tại cho phép khai thác các khả năng của robot.

Tóm tắt

Mặc dù có nhiều nghiên cứu, việc áp dụng công nghệ robot trong một số lĩnh vực chăm sóc sức khỏe vẫn chưa phổ biến. Những tiến bộ gần đây trong các giải pháp robot xuyên da và chiếu xạ được nhấn mạnh, vì chúng sẽ mở đường cho việc thực hiện rộng rãi hơn công nghệ robot trong thực hành lâm sàng.

Từ khóa


Tài liệu tham khảo

D’Souza M, Gendreau J, Feng A, Kim LH, Ho AL, Veeravagu A. Robotic-assisted spine surgery: history, efficacy, cost, and future trends [Corrigendum]. Robot Surg Res Rev. 2019;6:25–6.

Amack S, et al. Design and control of a compact modular robot for transbronchial lung biopsy. In: Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling; 2019. p. 17.

Groenhuis V, Veltman J, Siepel FJ, Stramigioli S. Stormram 3: A magnetic resonance imaging-compatible robotic system for breast biopsy. IEEE Robot Autom Mag. 2017;24(2):34–41.

Minchev G, et al. A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot. J Neurosurg. 2017;126(3):985–96.

• Stoianovici D, et al. MR safe robot, FDA clearance, safety and feasibility of prostate biopsy clinical trial. IEEE/ASME Trans Mechatroni. 2017;22(1):115–26 Expertise on MR-safe systems and prostate applications (FDA-approved).

Franco E, Brujic D, Rea M, Gedroyc WM, Ristic M. Needle-guiding robot for laser ablation of liver tumors under MRI guidance. IEEE/ASME Trans Mechatron. 2016;21(2):931–44.

Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–60.

Perez RE, Schwaitzberg SD. Robotic surgery: finding value in 2019 and beyond. Ann Laparosc Endosc Surg. 2019;4:51–1.

Sheetz KH, Dimick JB. Is it time for safeguards in the adoption of robotic surgery? JAMA. 2019;321(20):1971.

Michiels C, Jambon E, Bernhard JC. Measurement of the accuracy of 3D-printed medical models to be used for robot-assisted partial nephrectomy. Am J Roentgenol. 2019;213(3):626–31.

Gassert R, Yamamoto A, Chapuis D, Dovat L, Bleuler H, Burdet E. Actuation methods for applications in MR environments. Concepts Magn Reson Part B Magn Reson Eng. Oct. 2006;29B(4):191–209.

•• Monfaredi R, Cleary K, Sharma K. MRI robots for needle-based interventions: systems and technology. Ann Biomed Eng. 2018;46(10):1479–97 Review on MR safe robots, systems and technology.

Chen L, et al. Design of a dedicated five degreeof- freedom magnetic resonance imaging compatible robot for image guided prostate biopsy. J Med Devices, Trans ASME. 2015;9(1).

Moreira P, et al. The MIRIAM Robot: A novel robotic system for MR-guided needle insertion in the prostate. J Med Robot Res. 2017;02(04):1750006.

Lu M, Zhang Y, Hu Z, Du H, Niu S. Design and analysis of a novel MRI-compatible breast biopsy robotbehaviors. In: 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO); 2018. p. 1238–43.

• Groenhuis V, Siepel FJ, Veltman J, van Zandwijk JK, Stramigioli S. Stormram 4: an MR safe robotic system for breast biopsy. Ann Biomed Eng. 2018;46(10):1686–96 Award winning MR safe system.

Zhang T, Wen Y, Liu Y-H. Developing a parallel robot for MRI-guided breast intervention. IEEE Trans Med Robot Bionics. 2020;2(1):17–27.

Perlis N, Lawendy B, Barkin J. How i do it - MRI-ultrasound fusion prostate biopsy using the Fusion MR and Fusion Bx systems. Can J Urol. 2020;27(2):10185–91.

Bischoff R, et al. The KUKA-DLR Lightweight Robot arm - a new reference platform for robotics research and manufacturing. In: Joint 41st International Symposium on Robotics and 6th German Conference on Robotics 2010, ISR/ROBOTIK 2010, vol. 2; 2010.

• Welleweerd MK, Siepel FJ, Groenhuis V, Veltman J, Stramigioli S. Design of an end-effector for robot-assisted ultrasound-guided breast biopsies. Int J Comput Assist Radiol Surg. 2020;15(4):681–90 New multimodality MRI and US, sensor fusion–based biopsy approach using KUKA robotic arm for breast biopsy.

Pan X, Ma T, Li P, Jiang X, Song S, Max MQH. A novel intestinal microcapsule endoscope robot with biopsy function. In: 2018 IEEE International Conference on Cyborg and Bionic Systems, CBS 2018; 2019.

Zhang F, Ye D, Song S, Meng MQH. Design of a novel biopsy capsule robot with anchoring function for intestinal tract. Dali: IEEE Int Conf Robot Biomimetics, ROBIO 2019; 2019. p. 1471–6.

Ye D, Zhang F, Yuan S, Song S, Meng MQH. Magnetically driven wireless capsule robot with targeting biopsy function. Dali: IEEE Int Conf Robot Biomimetics, ROBIO 2019; 2019. p. 1222–7.

Badaan S, et al. Does needle rotation improve lesion targeting? Int J Med Robot Comput Assist Surg. 2011;7(2):138–47.

Shoham M, Burman M, Zehavi E, Joskowicz L, Batkilin E, Kunicher Y. Bone-mounted miniature robot for surgical procedures: concept and clinical applications. IEEE Trans Robot Autom. 2003;19(5):893–901.

H. H. G. Hansen et al., “Ultrasound-guided breast biopsy of ultrasound occult lesions using multimodality image co-registration and tissue displacement tracking,” 2019.

Maris BM, Fiorini P. Deformable surface registration for breast tumors tracking: a phantom study. Biomed Eng. 2017.

Liu J, et al. Image registration in medical robotics and intelligent systems: fundamentals and applications. Adv Intell Syst. 2019;6:1.

B. M. Maris and P. Fiorini, “Retrospective study on phantom for the application of medical image registration in the operating room scenario,” Proceeding Biomed Eng - 2016, 2016

Hu Y, et al. Weakly-supervised convolutional neural networks for multimodal image registration. Med Image Anal. 2018;49:1–13.

Balakrishnan G, Zhao A, Sabuncu MR, Guttag J, Dalca AV. VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans Med Imaging. 2019;38(8).

Zhu JH, et al. Performance of robotic assistance for skull base biopsy: a phantom study. J Neurol Surg, Part B Skull Base. 2017.

Minchev G, et al. A novel robot-guided minimally invasive technique for brain tumor biopsies. J Neurosurg. 2020.

• Carai A, et al. Robot-assisted stereotactic biopsy of diffuse intrinsic pontine glioma: a single-center experience. World Neurosurg. 2017;101:584–8 ROSA robot, stereotactic neurobiopsy.

Lefranc M, Peltier J. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert Rev Med Dev. 2016;13(10):899–906.

Li M, Gonenc B, Kim K, Shang W, Iordachita I. Development of an MRI-compatible needle driver for in-bore prostate biopsy. In: Proceedings of the 17th International Conference on Advanced Robotics, ICAR 2015; 2015.

• Bomers JGR, Bosboom DGH, Tigelaar GH, Sabisch J, Fütterer JJ, Yakar D. Feasibility of a 2nd generation MR-compatible manipulator for transrectal prostate biopsy guidance. Eur Radiol. 2017;27(4):1776–82 One of the first commercial MR-safe systems.

Hungr N, Bricault I, Cinquin P, Fouard C. Design and validation of a CT-and MRI-guided robot for percutaneous needle procedures. IEEE Trans Robot. 2016;32(4):973–87.

Pisla D, Ani D, Vaida C, Gherman B, Tucan P, Plitea N. BIO-PROS-2: an innovative parallel robotic structure for transperineal prostate biopsy. In: 2016 20th IEEE Int. Conf. Autom. Qual. Testing, Robot. AQTR 2016 - Proc.; 2016.

Patel A, et al. Robotic MRI/US fusion transperineal biopsy using the iSR’obot Mona Lisa: technique, safety and accuracy. Eur Urol Suppl. 2017;16(3).

Kratchman LB, Rahman MM, Saunders JR, Swaney PJ, Webster RJ III. Toward robotic needle steering in lung biopsy: a tendon-actuated approach. In: Medical Imaging 2011: Visualization, Image-Guided Procedures, and Modeling; 2011.

Priester A, et al. Magnetic resonance imaging underestimation of prostate cancer geometry: use of patient specific molds to correlate images with whole mount pathology. J Urol. 2017;197(2):320–6.

Butnariu S, Girbacia T, Girbacia F. An analysis on tissue deformation during robotic biopsy needle insertion. In: 2017 E-Health and Bioengineering Conference, EHB 2017; 2017.

Hansen NL, et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int. 2017;120(5):631–8.

Tran GN, et al. Magnetic resonance imaging–ultrasound fusion biopsy during prostate cancer active surveillance. Eur Urol. 2017;72(2):275–81.

Filson CP, et al. Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: the role of systematic and targeted biopsies. Cancer. 2016;122(6):884–92.

Chen M, Zhao H, Li Z, Zhao Y, Tian Q, Liu T. Development of a new needle insertion medical robot for breast tumor surgery. In: 2017 IEEE International Conference on Real-time Computing and Robotics (RCAR); 2017. p. 28–33.

Lim S, Jun C, Chang D, Petrisor D, Han M, Stoianovici D. Robotic transrectal ultrasound guided prostate biopsy. IEEE Trans Biomed Eng. 2019;66(9):2527–37.

Poquet C, Mozer P, Vitrani M-A, Morel G. An endorectal ultrasound probe comanipulator with hybrid actuation combining brakes and motors. IEEE/ASME Trans Mechatron. 2015;20(1):186–96.

Ye M, Li W, Chan DTM, Chiu PWY, Li Z. A semi-autonomous stereotactic brain biopsy robot with enhanced safety. IEEE Robot Autom Lett. 2020;5(2):1405–12.

Navarro-Alarcon D, et al. Developing a compact robotic needle driver for MRI-guided breast biopsy in tight environments. IEEE Robot Autom Lett. 2017;2(3):1648–55.

Y. Zhang, M. Lu, and H. Du, “Kinematics analysis and trajectory planning for a breast intervention robot under MRI environment,” 2017 IEEE Int. Conf. Cyborg Bionic Syst. CBS 2017, vol. 2018-Janua, pp. 237–242, 2017.

Liu W, Yang Z, Jiang S, Feng D, Zhang D. Design and implementation of a new cable-driven robot for MRI-guided breast biopsy. Int J Med Robot Comput Assist Surg. 2020.

Y. Zhang, C. Shi, H. Du, B. Gu, and Y. Yu, “A MRI compatible robot for breast intervention,” 2015 IEEE Int. Conf. Robot. Biomimetics, IEEE-ROBIO 2015, pp. 2472–2477, 2015.

T. Zhang, D. Navarro-Alarcon, K. W. Ng, M. K. Chow, Y. H. Liu, and H. L. Chung, “A novel palm-shape breast deformation robot for MRI-guided biopsy,” 2016 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2016, pp. 527–532, 2016.

Moon Y, Seo JB, Choi J. Development of new end-effector for proof-of-concept of fully robotic multichannel biopsy. IEEE/ASME Trans Mechatron. 2015;20(6):2996–3008.

Schreiber DA, Shak DB, Norbash AM, Yip MC. An open-source 7-axis, robotic platform to enable dexterous procedures within CT scanners. IEEE Int Conf Intell Robot Syst. 2019:386–93.

Won HJ, Kim N, Kim GB, Seo JB, Kim H. Validation of a CT-guided intervention robot for biopsy and radiofrequency ablation: experimental study with an abdominal phantom. Diagn Interv Radiol. 2017.

Ben-David E, Shochat M, Roth I, Nissenbaum I, Sosna J, Goldberg SN. Evaluation of a CT-guided robotic system for precise percutaneous needle insertion. J Vasc Interv Radiol. 2018;10:29.

P. Tucan et al., “Development of a control system for an innovative parallel robot used in prostate biopsy,” Proc. - 2017 21st Int. Conf. Control Syst. Comput. CSCS 2017, pp. 76–83, 2017.

Chen L, et al. Design of a dedicated five degree-of-freedom magnetic resonance imaging compatible robot for image guided prostate biopsy. J Med Device. 2015;9(1).

Su H, et al. Piezoelectrically actuated robotic system for MRI-guided prostate percutaneous therapy. IEEE/ASME Trans Mechatron. 2015;20(4):1920–32.

K.-Y. Kim, M. Li, B. Gonenc, W. Shang, S. Eslami, and I. Iordachita, “Design of an MRI-compatible modularized needle driver for In-bore MRI-guided prostate interventions,” in 2015 15th International Conference on Control, Automation and Systems (ICCAS), 2015, pp. 1520–1525.

Wartenberg M, Patel N, Li G, Fischer GS. Towards synergistic control of hands-on needle insertion with automated needle steering for MRI-guided prostate interventions. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS. 2016;2016-Octob:5116–9.

Alvara AN, Looi T, Saab R, Shorter A, Goldenberg A, Drake J. Development and validation of MRI compatible pediatric surgical robot with modular tooling for bone biopsy. In: IEEE International Conference on Intelligent Robots and Systems; 2018.

S. O. Orhan, M. C. Yildirim, and O. Bebek, “Design and modeling of a parallel robot for ultrasound guided percutaneous needle interventions,” IECON 2015 - 41st Annu. Conf. IEEE Ind. Electron. Soc., pp. 5002–5007, 2015.

Kim KY, Woo HS, Cho JH, Lee YK. Development of a two DOF needle driver for CT-guided needle insertion-Type interventional robotic system. RO-MAN 2017 - 26th IEEE Int Symp Robot Hum Interact Commun. 2017;2017-Janua:470–5.

Patel NA, Yan J, Levi D, Monfaredi R, Cleary K, Iordachita I. Body-mounted robot for image-guided percutaneous interventions: mechanical design and preliminary accuracy evaluation. IEEE Int Conf Intell Robot Syst. 2018:1443–8.

Gao Y, Takagi K, Kato T, Shono N, Hata N. Continuum robot with follow-the-leader motion for endoscopic third ventriculostomy and tumor biopsy. IEEE Trans Biomed Eng. 2020.

Girerd C, Rabenorosoa K, Rougeot P, Renaud P. Towards optical biopsy of olfactory cells using concentric tube robots with follow-the-leader deployment. IEEE Int Conf Intell Robot Syst. 2017;2017-Septe:5661–7.

Dupourqué L, Masaki F, Colson YL, Kato T, Hata N. Transbronchial biopsy catheter enhanced by a multisection continuum robot with follow-the-leader motion. Int J Comput Assist Radiol Surg. 2019;14(11).

Son D, Gilbert H, Sitti M. Magnetically actuated soft capsule endoscope for fine-needle biopsy. Soft Robot. 2020.

Shakoor A, Luo T, Chen S, Xie M, Mills JK, Sun D. A high-precision robot-aided single-cell biopsy system, vol. 8; 2017. p. 5397–402.

Baran Y, Rabenorosoa K, Laurent GJ, Rougeot P, Andreff N, Tamadazte B. Preliminary results on OCT-based position control of a concentric tube robot. IEEE Int Conf Intell Robot Syst. 2017;2017-Septe:3000–5.

Del Giudice G, Wang L, Shen JH, Joos K, Simaan N. Continuum robots for multi-scale motion: micro-scale motion through equilibrium modulation. IEEE Int Conf Intell Robot Syst. 2017;2017-Septe:2537–42.