Necessary and sufficient conditions on the existence of solutions for the exterior Dirichlet problem of Hessian equations

Springer Science and Business Media LLC - Tập 2022 - Trang 1-11 - 2022
Limei Dai1, Hongfei Li2
1School of Mathematics and Information Science, Weifang University, Weifang, China
2College of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, China

Tóm tắt

In this paper, we consider the exterior Dirichlet problem of Hessian equations $\sigma _{k}(\lambda (D^{2}u))=g(x)$ with g being a perturbation of a general positive function at infinity. By estimating the eigenvalues of the solution, we obtain the necessary and sufficient conditions of existence of radial symmetric solutions with asymptotic behavior at infinity.

Tài liệu tham khảo

Bao, J.G., Li, H.G.: On the exterior Dirichlet problem for the Monge–Ampère equation in dimension two. Nonlinear Anal. 75, 6448–6455 (2012) Bao, J.G., Li, H.G., Li, Y.Y.: On the exterior Dirichlet problem for Hessian equations. Trans. Am. Math. Soc. 366, 6183–6200 (2014) Bao, J.G., Li, H.G., Zhang, L.: Monge–Ampère equation on exterior domains. Calc. Var. Partial Differ. Equ. 52, 39–63 (2015) Bao, J.G., Li, H.G., Zhang, L.: Global solutions and exterior Dirichlet problem for Monge–Ampère equation in \(\mathbb{R}^{2}\). Differ. Integral Equ. 29, 563–582 (2016) Bao, J.G., Xiong, J.G., Zhou, Z.W.: Existence of entire solutions of Monge–Ampère equations with prescribed asymptotic behavior. Calc. Var. Partial Differ. Equ. 58, 193 (2019) Caffarelli, L.: Topics in PDEs: the Monge–Ampère equation. Graduate course. Courant Institute, New York University (1995) Caffarelli, L., Li, Y.Y.: An extension to a theorem of Jörgens, Calabi, and Pogorelov. Commun. Pure Appl. Math. 56, 549–583 (2003) Calabi, E.: Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Mich. Math. J. 5, 105–126 (1958) Cao, X., Bao, J.G.: Hessian equations on exterior domain. J. Math. Anal. Appl. 448, 22–43 (2017) Cheng, S.Y., Yau, S.T.: Complete affine hypersurfaces, I. The completeness of affine metrics. Commun. Pure Appl. Math. 39, 839–866 (1986) Dai, L.M.: Existence of solutions with asymptotic behavior of exterior problems of Hessian equations. Proc. Am. Math. Soc. 139, 2853–2861 (2011) Dai, L.M.: The Dirichlet problem for Hessian quotient equations in exterior domains. J. Math. Anal. Appl. 380, 87–93 (2011) Dai, L.M., Bao, J.G.: On uniqueness and existence of viscosity solutions to Hessian equations in exterior domains. Front. Math. China 6, 221–230 (2011) Delanoë, P.: Partial decay on simple manifolds. Ann. Glob. Anal. Geom. 10, 3–61 (1992) Ferrer, L., Martínez, A., Milán, F.: An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres. Math. Z. 230, 471–486 (1999) Ferrer, L., Martínez, A., Milán, F.: The space of parabolic affine spheres with fixed compact boundary. Monatshefte Math. 130, 19–27 (2000) Hong, G.H.: A remark on Monge–Ampère equation over exterior domains. https://arxiv.org/abs/2007.12479 Jörgens, K.: Über die Lösungen der Differentialgleichung \(rt-s^{2}=1\). Math. Ann. 127, 130–134 (1954). (German) Jost, J., Xin, Y.L.: Some aspects of the global geometry of entire space-like submanifolds. Dedicated to Shiing-Shen Chern on his 90th birthday. Results Math. 40, 233–245 (2001) Ju, H.J., Bao, J.G.: On the exterior Dirichlet problem for Monge–Ampère equations. J. Math. Anal. Appl. 405, 475–483 (2013) Li, D.S., Li, Z.S.: On the exterior Dirichlet problem for Hessian quotient equations. J. Differ. Equ. 264, 6633–6662 (2018) Li, H.G., Dai, L.M.: The exterior Dirichlet problem for Hessian quotient equations. J. Math. Anal. Appl. 393, 534–543 (2012) Li, H.G., Li, X.L., Zhao, S.Y.: Hessian quotient equations on exterior domains. https://arxiv.org/abs/2004.06908 Li, Y.Y., Lu, S.Y.: Existence and nonexistence to exterior Dirichlet problem for Monge–Ampère equation. Calc. Var. Partial Differ. Equ. 57, 161 (2018) Li, Y.Y., Lu, S.Y.: Monge-Ampere equation with bounded periodic data. https://doi.org/10.48550/arXiv.1906.02800 Pogorelov, A.: On the improper convex affine hyperspheres. Geom. Dedic. 1, 33–46 (1972) Trudinger, N.S., Wang, X.J.: The Bernstein problem for affine maximal hypersurfaces. Invent. Math. 140, 399–422 (2000) Wang, C., Bao, J.G.: Necessary and sufficient conditions on existence and convexity of solutions for Dirichlet problems of Hessian equations on exterior domains. Proc. Am. Math. Soc. 141, 1289–1296 (2013)