Near Time-Optimal Trajectory Generation for Multirotors using Numerical Optimization and Safe Corridors

Journal of Intelligent and Robotic Systems - Tập 105 - Trang 1-10 - 2022
Charbel Toumieh1, Alain Lambert1
1CNRS, Laboratoire de recherche en informatique, Université Paris-Saclay, Orsay, France

Tóm tắt

Trajectory generation is a fundamental problem for every type of robot. In most applications, the robots should reach their goals in the minimum time possible. Time-optimal trajectory generation allows us to solve this problem. The generation of such trajectories for multirotors has gained traction with new applications in transport, delivery and search and rescue missions, as well as other applications in sports and entertainment such as drone racing. The current state-of-the-art is heavily based on polynomial methods and most methods choose a conservative approach when limiting the velocity or acceleration as a way to account for nonlinearities and guarantee feasibility, which limits time optimality and trajectory speed. We overcome this limitation by proposing a new formulation for multirotors trajectory generation that takes into account nonlinearities such as gravity and aerodynamic drag, It allows us to provide more time-optimal solutions then the state-of-the-art. We present an algorithm that uses our new formulation for near time-optimal trajectory generation for multirotors subject to obstacles/path constraints. We validate our approach using a state of the art simulator and compare it with other time-optimal trajectory generation methods.

Tài liệu tham khảo

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi – A software framework for nonlinear optimization and optimal control. Mathematical Programming Computation (In Press) (2018) Beul, M., Behnke, S.: Analytical time-optimal trajectory generation and control for multirotors. In: 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 87–96. IEEE (2016) Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R: Receding horizon “next-best-view” planner for 3d exploration. IEEE International Conference on Robotics and Automation (ICRA) (2016) Bircher, A., Kamel, M., Alexis, K., Oleynikova, H., Siegwart, R.: Receding horizon path planning for 3d exploration and surface inspection. Auton. Robot., pp 1–16 (2016) Bonami, P., Lee, J.: Bonmin user’s manual. Numer. Math 4, 1–32 (2007) Burri, M., Oleynikova, H., Achtelik, M. W., Siegwart, R.: Real-time visual-inertial mapping, re-localization and planning onboard mavs in unknown environments. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1872–1878. IEEE (2015) Foehn, P., Scaramuzza, D.: Cpc: Complementary progress constraints for time-optimal quadrotor trajectories. arXiv preprint arXiv:2007.06255 (2020) Gao, F., Wu, W., Pan, J., Zhou, B., Shen, S.: Optimal time allocation for quadrotor trajectory generation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4715–4722. IEEE (2018) Guerra, W., Tal, E., Murali, V., Ryou, G., Karaman, S.: Flightgoggles: Photorealistic sensor simulation for perception-driven robotics using photogrammetry and virtual reality. arXiv preprint arXiv:1905.11377 (2019) Hehn, M., D’Andrea, R.: Quadrocopter trajectory generation and control. IFAC Proceedings 44(1), 1485–1491 (2011) Kamel, M., Burri, M., Siegwart, R.: Linear vs nonlinear mpc for trajectory tracking applied to rotary wing micro aerial vehicles. IFAC-PapersOnLine 50(1), 3463–3469 (2017) Liu, S., Atanasov, N., Mohta, K., Kumar, V.: Search-based motion planning for quadrotors using linear quadratic minimum time control. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2872–2879. IEEE (2017) Liu, S., Watterson, M., Mohta, K., Sun, K., Bhattacharya, S., Taylor, C.J., Kumar, V.: Planning dynamically feasible trajectories for quadrotors using safe flight corridors in 3-d complex environments. IEEE Robot. Autom. Lett. 2(3), 1688–1695 (2017) Lockheed-Martin: Alphapilot – lockheed martin ai drone racing innovation challenge. https://www.herox.com/alphapilot, accessed 2019-09-14 Madaan, R., Gyde, N., Vemprala, S., Brown, M., Nagami, K., Taubner, T., Cristofalo, E., Scaramuzza, D., Schwager, M., Kapoor, A.: Airsim drone racing lab (2020) Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525. IEEE (2011) Microsoft-Airsim: Game of drones competition. https://github.com/microsoft/AirSim-NeurIPS2019-Drone-Racing, Accessed 2019-09-14 Nocedal, J.: Knitro: an Integrated Package for Nonlinear Optimization. In: Large-Scale Nonlinear Optimization, pp. 35–60. Springer (2006) Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G., Alexis, K., Siegwart, R.: Long-endurance sensing and mapping using a hand-launchable solar-powered uav. Field and Service Robotics, pp. 441–454 (2016) Richter, C., Bry, A., Roy, N.: Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. In: Robotics Research, pp 649–666. Springer (2016) Shah, S., Dey, D., Lovett, C., Kapoor, A.: Airsim: High-fidelity visual and physical simulation for autonomous vehicles. In: Field and Service Robotics. https://arxiv.org/abs/1705.05065 (2017) Spedicato, S., Notarstefano, G.: Minimum-time trajectory generation for quadrotors in constrained environments. IEEE Trans. Control Syst. Technol. 26(4), 1335–1344 (2017) Tutsoy, O., Barkana, D.E., Balikci, K.: A novel exploration-exploitation-based adaptive law for intelligent model-free control approaches. IEEE Trans. Cybern., pp. 1–9. https://doi.org/10.1109/TCYB.2021.3091680 (2021) Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N., Zanelli, A., Quirynen, R., Diehl, M.: Towards a modular software package for embedded optimization. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC) (2018) Wächter, A., Biegler, L.: Ipopt-an interior point optimizer (2009)