NeOProM: Neonatal Oxygenation Prospective Meta-analysis Collaboration study protocol
Tóm tắt
The appropriate level of oxygenation for extremely preterm neonates (<28 weeks' gestation) to maximise the greatest chance of survival, without incurring significant morbidity, remains unknown. Infants exposed to lower levels of oxygen (targeting oxygen saturations of <90%) in the first weeks of life are at increased risk of death, cerebral palsy, patent ductus arteriosus, pulmonary vascular resistance and apnoea, whilst those maintained in higher levels of oxygen (targeting oxygen saturations of >90%) have been reported to have greater rates of morbidity including retinopathy of prematurity and chronic lung disease. In order to answer this clinical dilemma reliably, large scale trial evidence is needed. To detect a small but important 4% increase in death or severe disability in survivors, over 5000 neonates would need to be recruited. As extreme prematurity affects 1% of births, such a project undertaken by one trial group would be prohibitively lengthy and expensive. Hence, the Neonatal Oxygenation Prospective Meta-analysis (NeOProM) Collaboration has been formed. A prospective meta-analysis (PMA) is one where studies are identified, evaluated, and determined to be eligible before the results of any included studies are known or published, thereby avoiding some of the potential biases inherent in standard, retrospective meta-analyses. This methodology provides the same strengths as a single large-scale multicentre randomised study whilst allowing greater pragmatic flexibility. The NeOProM Collaboration protocol (NCT01124331) has been agreed prior to the results of individual trials being available. This includes pre-specifying the hypotheses, inclusion criteria and outcome measures to be used. Each trial will first publish their respective results as they become available and the combined meta-analytic results, using individual patient data, will be published when all trials are complete. The primary outcome to be assessed is a composite outcome of death or major disability at 18 months - 2 years corrected age. Secondary outcomes include several measures of neonatal morbidity. The size of the combined dataset will allow the effect of the interventions to be explored more reliably with respect to pre-specified patient- and intervention-level characteristics. Results should be available by 2014.
Từ khóa
Tài liệu tham khảo
Centre for Epidemiology and Research, New South Wales Department of Health: New South Wales Mothers and Babies 2005. NSW Public Health Bull. 2007, 18: S-1-
Abeywardana S: The report of the Australian and New Zealand Neonatal Network, 2005. 2007, Sydney: ANZNN
Victorian Infant Collaborative Study Group: Economic outcome for intensive care infants of birthweight 500-999 g born in Victoria in the post surfactant era. J Paediatr Child Health. 1997, 33: 202-208. 10.1111/j.1440-1754.1997.tb01580.x.
Anderson P, Doyle LW, Victorian Infant Collaborative Study Group: Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA. 2003, 289: 3264-3272. 10.1001/jama.289.24.3264.
Doyle LW, Faber B, Callanan C, Freezer N, Ford GW, Davis NM: Bronchopulmonary Dysplasia in Very Low Birth Weight Subjects and Lung Function in Late Adolescence. Pediatrics. 2006, 118: 108-113. 10.1542/peds.2005-2522.
Hack M: Young adult outcomes of very-low-birth-weight children. Semin Fetal Neonat Med. 2006, 11: 127-137. 10.1016/j.siny.2005.11.007.
Halvorsen T, Skadberg BT, Eide GE, Røksund OD, Carlsen KH, Bakke P: Pulmonary outcome in adolescents of extreme preterm birth: a regional cohort study. Acta Paediatr. 2004, 93: 1294-1300. 10.1111/j.1651-2227.2004.tb02926.x.
Hovi P, Andersson S, Eriksson JG, Jarvenpaa A, Strang-Karlsson S, Makitie O, Kajantie E: Glucose Regulation in Young Adults with Very Low Birth Weight. N Engl J Med. 2007, 356: 2053-2063. 10.1056/NEJMoa067187.
Rodríguez-Soriano J, Aguirre M, Oliveros R, Vallo A: Long-term renal follow-up of extremely low birth weight infants. Pediatr Nephrol. 2005, 20: 579-584.
Sutton L, Bajuk B, New South Wales Neonatal Intensive Care Unit Study Group: Population-based study of infants born at less than 28 weeks' gestation in New South Wales, Australia, in 1992-3. Paediatr Perinat Epidemiol. 1999, 13: 288-301. 10.1046/j.1365-3016.1999.00193.x.
Saigal S, Burrows E, Stoskopf BL, Rosenbaum PL, Streiner D: Impact of extreme prematurity on families of adolescent children. J Pediatr. 2000, 137: 701-706. 10.1067/mpd.2000.109001.
Avery ME, Oppenheimer MD: Recent increase in mortality from hyaline membrane disease. Pediatrics. 1960, 57: 553-559. 10.1016/S0022-3476(60)80083-2.
Hellström A, Perruzzi C, Ju M, Engstrom E, Hard AL, Liu JL, Albertsson-Wikland K, Carlsson B, Niklasson A, Sjodell L, et al: Low IGF-I suppresses VEGF-survival signaling in retinal endothelial cells: direct correlation with clinical retinopathy of prematurity. Proc Natl Acad Sci USA. 2001, 98: 5804-5808.
Early Treatment For Retinopathy Of Prematurity Cooperative Group: Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial. Arch Ophthalmol. 2003, 121: 1684-1694. 10.1001/archopht.121.12.1684.
Jobe AH, Bancalari E: Bronchopulmonary dysplasia. Am J Respir Crit Care Med. 2001, 163: 1723-1729.
Warner BB, Stuart LA, Papes RA, Wispe JR: Functional and pathological effects of prolonged hyperoxia in neonatal mice. Am J Physiol. 1998, 275: L110-117.
Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, Volpe JJ, Kinney HC: Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol. 2003, 62: 441-450.
Niijima S, Shortland DB, Levene MI, Evans DH: Transient hyperoxia and cerebral blood flow velocity in infants born prematurely and at full term. Arch Dis Child. 1988, 63: 1126-1130. 10.1136/adc.63.10_Spec_No.1126.
Collins MP, Lorenz JM, Jetton JR, Paneth N: Hypocapnia and other ventilation-related risk factors for cerebral palsy in low birth weight infants. Pediatr Res. 2001, 50: 712-719. 10.1203/00006450-200112000-00014.
American Academy of Pediatrics, American College of Obstetricians and Gynecologists: Guidelines for Perinatal Care. 1988, Washington DC, 2
American Academy of Pediatrics, American College of Obstetricians and Gynecologists: Guidelines for Perinatal Care. 2002, IL: Elk Grove Village, 5
Silverman WA: A cautionary tale about supplemental oxygen: the albatross of neonatal medicine. Pediatrics. 2004, 113: 394-396. 10.1542/peds.113.2.394.
Silverman WA: Retrolental fibroplasia: a modern parable. 1980, Grune & Stratton
Askie LM, Henderson-Smart DJ: Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Db Syst Rev. 2001, Art. No.: CD001077, 4
Bolton DPG, Cross KW: Further observations on cost of preventing retrolental fibroplasia. Lancet. 1974, 445-448. 10.1016/S0140-6736(74)92395-2.
McDonald AD: The aetiology of spastic diplegia. A synthesis of epidemiological and pathological evidence. Dev Med Child Neuro. 1964, 11: 277-285.
Cross KW: Cost of preventing retrolental fibroplasia?. Lancet. 1973, 954-956. 10.1016/S0140-6736(73)92610-X.
STOP ROP Investigators: Supplemental Therapeutic Oxygen for Prethreshold Retinopathy Of Prematurity (STOP-ROP), a randomized, controlled trial. I: primary outcomes. Pediatrics. 2000, 105: 295-310. 10.1542/peds.105.2.295.
Askie LM, Henderson-Smart DJ, Irwig L, Simpson JM: Oxygen-saturation targets and outcomes in extremely preterm infants. N Engl J Med. 2003, 349: 959-967. 10.1056/NEJMoa023080.
Kinsey VE, Arnold HJ, Kalina RE, Stern L, Stahlman M, Odell G, Driscoll JM, Elliott JH, Payne J, Patz A: PaO2 levels and retrolental fibroplasia: a report of the cooperative study. Pediatrics. 1977, 60: 655-668.
McIntosh N, Marlow N: High or low oxygen saturation for the preterm baby. Arch Dis Child Fetal Neonatal Ed. 2001, 84: F149-F150. 10.1136/fn.84.3.F149.
Flynn JT, Bancalari E, Snyder ES, Goldberg RN, Feuer W, Cassady J, Schiffman J, Feldman HI, Bachynski B, Buckley E, et al: A cohort study of transcutaneous oxygen tension and the incidence and severity of retinopathy of prematurity. N Engl J Med. 1992, 326: 1050-1054. 10.1056/NEJM199204163261603.
Thilo EH, Andersen D, Wasserstein ML, Schmidt J, Luckey D: Saturation by pulse oximetry: comparison of the results obtained by instruments of different brands. J Pediatrics. 1993, 122: 620-626. 10.1016/S0022-3476(05)83549-8.
Tin W, Milligan DW, Pennefather P, Hey E: Pulse oximetry, severe retinopathy, and outcome at one year in babies of less than 28 weeks gestation. Arch Dis Child Fetal Neonatal Ed. 2001, 84: F106-F110. 10.1136/fn.84.2.F106.
Anderson CG, Benitz WE, Madan A: Retinopathy of prematurity and pulse oximetry: a national survey of recent practices. J Perinatol. 2004, 24: 164-168. 10.1038/sj.jp.7211067.
Sun SC: Relation of target SpO2 levels and clinical outcome in ELBW infants on supplemental oxygen. Pediatr Res. 2002, 51: 350A-
Chow LC, Wright KW, Sola S: Can changes in clinical practice decrease the incidence of severe retinopathy in very low birth weight infants?. Pediatrics. 2003, 111: 339-345. 10.1542/peds.111.2.339.
Newburger JW, Silbert AR, Buckley LP, Fyler DC: Cognitive function and age at repair of transposition of the great arteries in children. N Engl J Med. 1984, 310: 1495-1499. 10.1056/NEJM198406073102303.
Skinner JR, Hunter S, Poets CF, Milligan DWA, Southall D, Hey EN: Haemodynamic effects of altering arterial oxygen saturation in preterm infants with respiratory failure. Arch Dis Child Fetal Neonatal Ed. 1999, 80: F81-F87. 10.1136/fn.80.2.F81.
Subhedar NV, Shaw NJ: Changes in pulmonary arterial pressure in preterm infants with chronic lung disease. Arch Dis Child Fetal Neonatal Ed. 2000, 82: F243-F247. 10.1136/fn.82.3.F243.
Cole CH, Wright KW, Tarnow-Mordi W, Phelps DL, Pulse Oximetry Saturation Trial for Prevention of Retinopathy of Prematurity Planning Study Group: Resolving our uncertainty about oxygen therapy. Pediatrics. 2003, 112: 1415-1419. 10.1542/peds.112.6.1415.
Alderson P, Green S, Higgins JPT, Eds: Cochrane Reviewers' Handbook 4.2.2 [updated March 2004]. The Cochrane Library, Issue 1. 2004, Chichester, UK: John Wiley & Sons, Ltd
Simes RJ, on behalf of the PPP and CTT Investigators: Prospective meta-analysis of cholesterol-lowering studies: the Prospective Pravastatin Pooling (PPP) Project and the Cholesterol Treatment Trialists (CTT) Collaboration. Am J Cardiol. 1995, 76: 122C-126C. 10.1016/S0002-9149(99)80482-2.
World Medical Organization: Declaration of Helsinki. BMJ. 1996, 313: 1448-1449.
Review Manager (RevMan) [Computer program]. 2008, Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration
Efficacy of adjuvant fluorouracil and folinic acid in colon cancer: International Multicentre Pooled Analysis of Colon Cancer Trials (IMPACT) investigators. Lancet. 1995, 345: 939-944. 10.1016/S0140-6736(95)90696-7.
Blood Pressure Lowering Treatment Trialists' Collaboration: Effects of different blood-pressure-lowering regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet. 2003, 362: 1527-1535. 10.1016/S0140-6736(03)14739-3.
Higgins JP, Thompson SG: Quantifying heterogeneity in a meta-analysis. Stat Med. 2002, 21: 1539-1558. 10.1002/sim.1186.
Bayley N: Bayley scales of infant and toddler development. 2006, San Antonio, TX:Harcourt Assessment, Inc., Third
Holmström G, Larsson E: Long-term follow-up of visual functions in prematurely born children--a prospective population-based study up to 10 years of age. J AAPOS. 2008, 12: 157-162.
Morris C: Development of the Gross Motor Function Classification System (1997). Dev Med Child Neuro. 2007, 49: 644-10.1111/j.1469-8749.2007.00644.x.
Eliasson A, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Öhrvall A, Rosenbaum P: The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neuro. 2006, 48: 549-554. 10.1017/S0012162206001162.
Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C, Kirby A, Sourjina T, Peto R, Collins R, et al: Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90 056 participants in 14 randomised trials of statins. Lancet. 2005, 366: 1267-1278. 10.1016/S0140-6736(05)67394-1.
The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2431/11/6/prepub