Nature of FeSe<sub>2</sub>/N‐C Anode for High Performance Potassium Ion Hybrid Capacitor

Advanced Energy Materials - Tập 10 Số 4 - 2020
Junmin Ge1, Bin Wang1, Jue Wang1, Qingfeng Zhang1, Bingan Lu2,1
1School of Physics and Electronics, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, 410082 P. R. China
2Fujian Strait Research Institute of Industrial Graphene Technologies, Quanzhou, 362000 P. R. China

Tóm tắt

AbstractPotassium ion hybrid capacitors have great potential for large‐scale energy devices, because of the high power density and low cost. However, their practical applications are hindered by their low energy density, as well as electrolyte decomposition and collector corrosion at high potential in potassium bis(fluoro‐sulfonyl)imide‐based electrolyte. Therefore, anode materials with high capacity, a suitable voltage platform, and stability become a key factor. Here, N‐doping carbon‐coated FeSe2 clusters are demonstrated as the anode material for a hybrid capacitor, delivering a reversible capacity of 295 mAh g−1 at 100 mA g−1 over 100 cycles and a high rate capability of 158 mAh g−1 at 2000 mA g−1 over 2000 cycles. Meanwhile, through density functional theory calculations, in situ X‐ray diffraction, and ex situ transmission electron microscopy, the evolution of FeSe2 to Fe3Se4 for the electrochemical reaction mechanism is successfully revealed. The battery‐supercapacitor hybrid using commercial activated carbon as the cathode and FeSe2/N‐C as the anode is obtained. It delivers a high energy density of 230 Wh kg−1 and a power density of 920 W kg−1 (the energy density and power density are calculated based on the total mass of active materials in the anode and cathode).

Từ khóa


Tài liệu tham khảo

10.1039/C9TA01653H

10.1002/aenm.201803894

10.1016/j.jpowsour.2017.07.005

10.1016/j.jechem.2019.08.013

10.1016/j.nanoen.2017.03.029

10.1039/C8SC04489A

10.1002/aenm.201901533

10.1021/acsnano.9b05284

10.1002/adfm.201903496

10.1016/j.jpowsour.2019.226847

10.1016/j.nanoen.2019.01.009

Adekoya D., 2019, Energy Storage Mater.

10.1002/adfm.201906126

10.1039/C8TA06652C

10.1039/C8TA09751H

10.1039/C9TA08071F

10.1038/s41467-018-06923-6

10.1039/C7EE01535F

10.1002/adfm.201801989

10.1126/sciadv.aav7412

10.1002/anie.201904258

10.1039/C8EE01419A

10.1002/aenm.201802739

10.1002/adfm.201905095

10.1038/nchem.2085

10.1016/j.joule.2018.04.022

10.1002/smtd.201700083

10.1039/C5EE02329G

10.1002/advs.201800782

10.1002/adma.201703614

10.1002/adma.201702891

10.1002/advs.201900904

10.1039/C8TA00995C

10.1021/acsami.8b09410

10.1002/aenm.201802565

10.1002/aenm.201602733

10.1002/aenm.201601188

10.1016/j.ensm.2018.04.025

10.1016/j.matt.2019.04.003

10.1002/anie.201908023

10.1002/adma.201700606

10.1021/acsnano.9b02384

10.1021/acsami.6b10143

10.1021/acsnano.8b03541

10.1002/adma.201802745

10.1016/j.cej.2012.11.035

10.1016/j.apmt.2018.10.004

10.1016/j.ensm.2019.05.039

10.1002/adfm.201801765

10.1016/j.ensm.2019.04.008

10.1002/smll.201801806

10.1002/adma.201700104

10.1002/aenm.201801477

10.1002/adma.201800036

10.1016/0038-1098(69)90631-0

10.1016/S0022-3697(72)80057-X

10.1002/adma.201800804

10.1021/jacs.7b04945

10.1002/celc.201300186

10.1021/acsnano.6b08332

10.1021/am300385r

10.1002/adfm.201802684