Nature-Inspired Design of Smart Biomaterials Using the Chemical Biology of Nucleic Acids

Bulletin of the Chemical Society of Japan - Tập 89 Số 8 - Trang 843-868 - 2016
Ganesh N. Pandian1, Hiroshi Sugiyama2,1
1Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-ku, Kyoto 606-8501
2Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502

Tóm tắt

Abstract

In the natural cellular environment, nucleic acid biomolecules like DNA have biological implications via structural modifications and through precise coordination with other biomolecules in the local environment. Here, we detail the design of nature-inspired smart biomaterials that are based on the chemical biology of nucleic acids. N-Methylpyrrole (P) and N-methylimidazole (I) polyamides (PIPs), sequence-specific DNA-binding molecules have been, developed to image specific DNA sequences and to alter gene expression inside the living cells. The self-assembling feature of DNA was harnessed to achieve the programmed assembly of nanostructures with different dimensions. Also, the advanced DNA architectures with well-defined properties allowed the real-time visualization of the complicated single-molecule interactions, which in-turn provided vital intracellular mechanistic information. The molecular recognition properties of DNA were exploited to design biologically inspired hybrid catalysts for sustainable organic synthesis. Our review could serve as a guidebook for researchers who aim to develop nucleic acid-based synthetic biomaterials.

Từ khóa


Tài liệu tham khảo

Pandian, 2013, Pharmaceuticals, 6, 1, 10.3390/ph6010001

Watson, 1990, Science, 248, 44, 10.1126/science.2181665

Chin, 2011, Nat. Med., 17, 297, 10.1038/nm.2323

Pandian, 2014, Clin. Transl. Med., 3, 6, 10.1186/2001-1326-3-6

10.1007/978-4-431-55576-6_2

Pandian, 2014, Biomater. Sci., 2, 1043, 10.1039/c4bm00068d

Masuda, 2013, J. Mol. Cell Biol., 5, 354, 10.1093/jmcb/mjt034

Wu, 2013, Chem. Biol., 20, 1311, 10.1016/j.chembiol.2013.09.016

10.1007/978-3-642-54452-1_19

Patel, 2014, ACS Nano, 8, 8959, 10.1021/nn501589f

Pandian, 2012, Biotechnol. J., 7, 798, 10.1002/biot.201100361

Xu, 2006, Angew. Chem., Int. Ed., 45, 1354, 10.1002/anie.200501962

Endo, 2009, ChemBioChem, 10, 2420, 10.1002/cbic.200900286

Li, 2004, Angew. Chem., Int. Ed., 43, 4848, 10.1002/anie.200400656

Gorska, 2013, Angew. Chem., Int. Ed., 52, 6820, 10.1002/anie.201208460

Storhoff, 1999, Chem. Rev., 99, 1849, 10.1021/cr970071p

Seeman, 2003, Nature, 421, 427, 10.1038/nature01406

Park, 2010, Angew. Chem., Int. Ed., 49, 3870, 10.1002/anie.200905382

Wähnert, 1975, Nucleic Acids Res., 2, 391, 10.1093/nar/2.3.391

Kopka, 1985, J. Mol. Biol., 183, 553, 10.1016/0022-2836(85)90171-8

Mrksich, 1995, J. Am. Chem. Soc., 117, 3325, 10.1021/ja00117a002

White, 1998, Nature, 391, 468, 10.1038/35106

Hsu, 2008, Bioorg. Med. Chem. Lett., 18, 5851, 10.1016/j.bmcl.2008.05.063

Nishijima, 2010, Bioorg. Med. Chem., 18, 978, 10.1016/j.bmc.2009.07.018

Vaijayanthi, 2012, ChemBioChem, 13, 2170, 10.1002/cbic.201200451

Bando, 2007, Bioorg. Med. Chem., 15, 6937, 10.1016/j.bmc.2007.07.055

Fujimoto, 2008, Bioorg. Med. Chem., 16, 5899, 10.1016/j.bmc.2008.04.060

Fujimoto, 2008, Bioorg. Med. Chem., 16, 9741, 10.1016/j.bmc.2008.09.073

Minoshima, 2007, J. Am. Chem. Soc., 129, 5384, 10.1021/ja065235a

Vaijayanthi, 2013, Bioorg. Med. Chem., 21, 852, 10.1016/j.bmc.2012.12.018

Lai, 2005, J. Pharmacol. Exp. Ther., 315, 571, 10.1124/jpet.105.089086

Kawamoto, 2013, J. Am. Chem. Soc., 135, 16468, 10.1021/ja406737n

Hirata, 2014, J. Am. Chem. Soc., 136, 11546, 10.1021/ja506058e

Kawamoto, 2015, Chem. Sci., 6, 2307, 10.1039/C4SC03755C

Han, 2014, Biomater. Sci., 2, 297, 10.1039/C3BM60202H

Murty, 2004, Biol. Pharm. Bull., 27, 468, 10.1248/bpb.27.468

Takahashi, 2008, Chem. Biol., 15, 829, 10.1016/j.chembiol.2008.06.006

Yao, 2009, Cardiovasc. Res., 81, 797, 10.1093/cvr/cvn355

Ueno, 2009, J. Hypertens., 27, 508, 10.1097/HJH.0b013e3283207fe1

Suzuki, 2009, J. Antibiot., 62, 339, 10.1038/ja.2009.35

Matsuda, 2011, Kidney Int., 79, 46, 10.1038/ki.2010.330

Yasuda, 2011, Cancer Sci., 102, 2221, 10.1111/j.1349-7006.2011.02098.x

Syed, 2014, Chem. Biol., 21, 1370, 10.1016/j.chembiol.2014.07.019

Iguchi, 2013, Biol. Pharm. Bull., 36, 1152, 10.1248/bpb.b13-00135

Minoshima, 2008, Nucleic Acids Res., 36, 2889, 10.1093/nar/gkn116

Nagashima, 2009, Biol. Pharm. Bull., 32, 921, 10.1248/bpb.32.921

Fukasawa, 2009, Biopharm. Drug Dispos., 30, 81, 10.1002/bdd.648

Nagashima, 2009, J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 877, 1070, 10.1016/j.jchromb.2009.02.041

Wang, 2010, Cancer Sci., 101, 759, 10.1111/j.1349-7006.2009.01435.x

Sugiyama, 1996, Proc. Natl. Acad. Sci. U.S.A., 93, 14405, 10.1073/pnas.93.25.14405

Bando, 2006, Acc. Chem. Res., 39, 935, 10.1021/ar030287f

Bando, 2008, Bioorg. Med. Chem., 16, 2286, 10.1016/j.bmc.2007.11.064

Sasaki, 2008, Chem.—Eur. J., 14, 864, 10.1002/chem.200700571

Minoshima, 2010, Bioorg. Med. Chem., 18, 1236, 10.1016/j.bmc.2009.12.033

Asamitsu, 2014, Bioorg. Med. Chem., 22, 4646, 10.1016/j.bmc.2014.07.019

Shinohara, 2010, Anti-Cancer Drugs, 21, 228, 10.1097/CAD.0b013e328334d8f9

Kashiwazaki, 2009, Bioorg. Med. Chem., 17, 1393, 10.1016/j.bmc.2008.12.019

Kashiwazaki, 2010, Bioorg. Med. Chem., 18, 2887, 10.1016/j.bmc.2010.03.011

Yamamoto, 2014, Bioconjugate Chem., 25, 552, 10.1021/bc400567m

Guo, 2015, Bioorg. Med. Chem., 23, 855, 10.1016/j.bmc.2014.12.025

Minoshima, 2010, Bioorg. Med. Chem., 18, 168, 10.1016/j.bmc.2009.11.005

Kashiwazaki, 2012, J. Med. Chem., 55, 2057, 10.1021/jm201225z

Taylor, 2014, Chem.—Eur. J., 20, 1310, 10.1002/chem.201303295

Hiraoka, 2015, Nat. Commun., 6, 6706, 10.1038/ncomms7706

Taylor, 2015, Chem.—Eur. J., 21, 14996, 10.1002/chem.201501870

Han, 2012, Nucleic Acids Res., 40, 11510, 10.1093/nar/gks897

Han, 2013, Bioorg. Med. Chem., 21, 5436, 10.1016/j.bmc.2013.06.005

Zhang, 2012, ChemBioChem, 13, 47, 10.1002/cbic.201100675

Taylor, 2014, Chem.—Asian J., 9, 2527, 10.1002/asia.201402331

Park, 2011, Bioconjugate Chem., 22, 120, 10.1021/bc100352y

Takagaki, 2011, Bioorg. Med. Chem., 19, 5896, 10.1016/j.bmc.2011.08.009

Takagaki, 2012, J. Am. Chem. Soc., 134, 13074, 10.1021/ja3044294

Kameshima, 2013, Angew. Chem., Int. Ed., 52, 13681, 10.1002/anie.201305489

Morinaga, 2011, J. Am. Chem. Soc., 133, 18924, 10.1021/ja207440p

Yamamoto, 2014, Chem.—Eur. J., 20, 752, 10.1002/chem.201302482

Ohtsuki, 2009, Tetrahedron Lett., 50, 7288, 10.1016/j.tetlet.2009.10.034

Pandian, 2011, ChemBioChem, 12, 2822, 10.1002/cbic.201100597

Pandian, 2012, Sci. Rep., 2, 544, 10.1038/srep00544

Pandian, 2014, Sci. Rep., 4, 3843, 10.1038/srep03843

Han, 2013, Angew. Chem., Int. Ed., 52, 13410, 10.1002/anie.201306766

Pandian, 2014, ACS Chem. Biol., 9, 2729, 10.1021/cb500724t

Syed, 2015, ChemBioChem, 16, 1497, 10.1002/cbic.201500140

Pandian, 2012, Bioorg. Med. Chem., 20, 2656, 10.1016/j.bmc.2012.02.032

Saha, 2013, Bioorg. Med. Chem., 21, 4201, 10.1016/j.bmc.2013.05.002

Saha, 2014, ChemMedChem, 9, 2374, 10.1002/cmdc.201402117

AnandhaKumar, 2014, ChemBioChem, 15, 2647, 10.1002/cbic.201402497

AnandhaKumar, 2015, ChemBioChem, 16, 20, 10.1002/cbic.201402556

Han, 2015, Angew. Chem., Int. Ed., 54, 8700, 10.1002/anie.201503607

Patel, 2015, J. Am. Chem. Soc., 137, 4598, 10.1021/ja511298n

Mulholland, 2012, Cell Biosci., 2, 3, 10.1186/2045-3701-2-3

Xu, 2008, J. Am. Chem. Soc., 130, 16470, 10.1021/ja806535j

Sannohe, 2009, Bioorg. Med. Chem., 17, 1870, 10.1016/j.bmc.2009.01.051

Mashimo, 2010, J. Am. Chem. Soc., 132, 14910, 10.1021/ja105806u

Koirala, 2012, Chem. Commun., 48, 2006, 10.1039/c2cc16752b

Koirala, 2013, J. Am. Chem. Soc., 135, 2235, 10.1021/ja309668t

Koirala, 2011, Nat. Chem., 3, 782, 10.1038/nchem.1126

Ghimire, 2014, J. Am. Chem. Soc., 136, 15537, 10.1021/ja503585h

Sugiyama, 2007, Bull. Chem. Soc. Jpn., 80, 823, 10.1246/bcsj.80.823

Tashiro, 2008, Tetrahedron Lett., 49, 428, 10.1016/j.tetlet.2007.11.141

Tashiro, 2010, J. Am. Chem. Soc., 132, 14361, 10.1021/ja106184w

Sannohe, 2014, Chem.—Eur. J., 20, 1223, 10.1002/chem.201303930

Li, 2015, Chem. Commun., 51, 8861, 10.1039/C5CC01812A

Morinaga, 2013, Bioorg. Med. Chem., 21, 466, 10.1016/j.bmc.2012.11.010

Morinaga, 2013, Nucleic Acids Res., 41, 4724, 10.1093/nar/gkt123

Hashiya, 2014, Nucleic Acids Res., 42, 13469, 10.1093/nar/gku1133

Saha, 2015, Chem. Commun., 51, 14485, 10.1039/C5CC05104E

Rothemund, 2006, Nature, 440, 297, 10.1038/nature04586

Endo, 2010, J. Am. Chem. Soc., 132, 1592, 10.1021/ja907649w

Endo, 2010, Angew. Chem., Int. Ed., 49, 9412, 10.1002/anie.201003604

Endo, 2012, Angew. Chem., Int. Ed., 51, 8778, 10.1002/anie.201201890

Endo, 2015, Angew. Chem., Int. Ed., 54, 10550, 10.1002/anie.201504656

Yamamoto, 2014, Nano Lett., 14, 2286, 10.1021/nl4044949

Kizaki, 2014, Org. Biomol. Chem., 12, 104, 10.1039/C3OB41823E

Kizaki, 2014, Biomater. Sci., 2, 1399, 10.1039/C4BM00113C

Yoshidome, 2012, J. Am. Chem. Soc., 134, 4654, 10.1021/ja209023u

Nakata, 2012, Angew. Chem., Int. Ed., 51, 2421, 10.1002/anie.201108199

Suzuki, 2014, J. Am. Chem. Soc., 136, 211, 10.1021/ja408656y

Suzuki, 2014, Nucleic Acids Res., 42, 7421, 10.1093/nar/gku320

Endo, 2012, Angew. Chem., Int. Ed., 51, 10518, 10.1002/anie.201205247

Takeuchi, 2016, Biomater. Sci., 4, 130, 10.1039/C5BM00274E

Endo, 2013, Chem.—Eur. J., 19, 16887, 10.1002/chem.201303830

Rajendran, 2013, J. Am. Chem. Soc., 135, 1117, 10.1021/ja310454k

Sannohe, 2010, J. Am. Chem. Soc., 132, 16311, 10.1021/ja1058907

Yang, 2014, Chem. Commun., 50, 4211, 10.1039/c4cc00489b

Endo, 2015, ACS Nano, 9, 9922, 10.1021/acsnano.5b03413

Rajendran, 2013, Nucleic Acids Res., 41, 8738, 10.1093/nar/gkt592

Rajendran, 2013, J. Am. Chem. Soc., 135, 18575, 10.1021/ja409085j

Rajendran, 2014, RSC Adv., 4, 6346, 10.1039/c3ra45676e

Rajendran, 2014, Angew. Chem., Int. Ed., 126, 4191, 10.1002/ange.201308903

Rajendran, 2015, Chem. Commun., 51, 9181, 10.1039/C5CC01678A

Endo, 2009, J. Am. Chem. Soc., 131, 15570, 10.1021/ja904252e

Endo, 2010, Chem.—Eur. J., 16, 5362, 10.1002/chem.200903057

Endo, 2011, Chem. Commun., 47, 3213, 10.1039/c0cc05306f

Rajendran, 2011, ACS Nano, 5, 665, 10.1021/nn1031627

Rajendran, 2013, Chem. Commun., 49, 686, 10.1039/C2CC37257F

Yatsunyk, 2013, ACS Nano, 7, 5701, 10.1021/nn402321g

Endo, 2014, Angew. Chem., Int. Ed., 53, 7484, 10.1002/anie.201402973

Endo, 2013, Chem. Commun., 49, 2879, 10.1039/c3cc38804b

Rajendran, 2014, Chem. Commun., 50, 8743, 10.1039/C4CC02244K

Endo, 2011, Org. Biomol. Chem., 9, 2075, 10.1039/c0ob01093f

Wickham, 2011, Nat. Nanotechnol., 6, 166, 10.1038/nnano.2010.284

Wickham, 2012, Nat. Nanotechnol., 7, 169, 10.1038/nnano.2011.253

Endo, 2011, Chem. Commun., 47, 10743, 10.1039/c1cc13984c

Koirala, 2014, Angew. Chem., Int. Ed., 126, 8275, 10.1002/ange.201404043

Tashiro, 2015, Nucleic Acids Res., 25, 245

Endo, 2012, J. Am. Chem. Soc., 134, 2852, 10.1021/ja2074856

Rajendran, 2011, J. Am. Chem. Soc., 133, 14488, 10.1021/ja204546h

Yang, 2012, J. Am. Chem. Soc., 134, 20645, 10.1021/ja307785r

Suzuki, 2014, J. Am. Chem. Soc., 136, 1714, 10.1021/ja4109819

Takenaka, 2014, Chem.—Eur. J., 20, 14951, 10.1002/chem.201404757

Yang, 2015, Nano Lett., 15, 6672, 10.1021/acs.nanolett.5b02502

Mohri, 2012, ACS Nano, 6, 5931, 10.1021/nn300727j

Yata, 2015, Sci. Rep., 5, 14979, 10.1038/srep14979

Nishida, 2016, Nanomedicine (N. Y., NY, U. S.), 12, 123, 10.1016/j.nano.2015.08.004

Osada, 2014, ACS Nano, 8, 8130, 10.1021/nn502253c

Suzuki, 2015, Nat. Commun., 6, 8052, 10.1038/ncomms9052

Sannohe, 2012, Bioorg. Med. Chem., 20, 2030, 10.1016/j.bmc.2012.01.040

Otomo, 2014, RSC Adv., 4, 31341, 10.1039/C4RA05678G

Park, 2014, Chem. Commun., 50, 1573, 10.1039/c3cc48297a

Yamamoto, 2015, RSC Adv., 5, 104601, 10.1039/C5RA24756J

Chen, 2014, Artif. DNA: PNA XNA, 5, e28226, 10.4161/adna.28226

Park, 2012, Chem. Commun., 48, 10398, 10.1039/c2cc35625b

Petrova, 2014, Chem. Phys. Lett., 600, 87, 10.1016/j.cplett.2014.03.060

Park, 2014, ACS Catal., 4, 4070, 10.1021/cs501086f

Park, 2013, Biomater. Sci., 1, 1034, 10.1039/c3bm60134j

Park, 2015, ACS Catal., 5, 4708, 10.1021/acscatal.5b01046