Natural hybridization among three Rhododendron species (Ericaceae) revealed by morphological and genomic evidence

Wei Zheng1, Li‐Jun Yan1, Kevin S. Burgess2, Ya‐Huang Luo1, Jia‐Yun Zou1, Han‐Tao Qin1, Jihua Wang3, Lian‐Ming Gao1
1CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
2Department of Biology, Columbus State University, University System of Georgia, 31907-5645, Columbus, GA, USA
3The Flower Research Institute, Yunnan Academy of Agricultural Sciences, 650205, Kunming, China

Tóm tắt

AbstractBackgroundNatural hybridization can influence the adaptive response to selection and accelerate species diversification. Understanding the composition and structure of hybrid zones may elucidate patterns of hybridization processes that are important to the formation and maintenance of species, especially for taxa that have experienced rapidly adaptive radiation. Here, we used morphological traits, ddRAD-seq and plastid DNA sequence data to investigate the structure of aRhododendronhybrid zone and uncover the hybridization patterns among three sympatric and closely related species.ResultsOur results show that the hybrid zone is complex, where bi-directional hybridization takes place among the three sympatric parental species:R. spinuliferum,R. scabrifolium, andR. spiciferum. Hybrids betweenR. spinuliferumandR. spiciferum(R.×duclouxii) comprise multiple hybrid classes and a high proportion of F1generation hybrids, while a novel hybrid taxon betweenR. spinuliferumandR. scabrifoliumdominated the F2generation, but no backcross individuals were detected. The hybrid zone showed basically coincident patterns of population structure between genomic and morphological data.ConclusionsNatural hybridization exists among the threeRhododendronspecies in the hybrid zone, although patterns of hybrid formation vary between hybrid taxa, which may result in different evolutionary outcomes. This study represents a unique opportunity to dissect the ecological and evolutionary mechanisms associated with adaptive radiation ofRhododendronspecies in a biodiversity hotspot.

Từ khóa


Tài liệu tham khảo

Rieseberg LH, Van Fossen C, Desrochers AM. Hybrid speciation accompanied by genomic reorganization in wild sunflowers. Nature. 1995;375:13.

Rieseberg LH, Sinervo B, Linder CR, Ungerer MC, Arias DM. Role of gene interactions in hybrid speciation: evidence from ancient and experimental hybrids. Science. 1996;272:741–5.

Arnold ML. Iris nelsonii (Iridaceae): origin and genetic composition of a homoploid hybrid species. Am J Bot. 1993;80:577–83.

Brennan AC, Bridle JR, Wang AL, Hiscock SJ, Abbott RJ. Adaptation and selection in the Senecio (Asteraceae) hybrid zone on Mount Etna, Sicily. New Phytol. 2009;183:702–17.

Gil HY, Kim SC. Viola woosanensis, a recurrent spontaneous hybrid between V. ulleungdoensis and V. chaerophylloides (Violaceae) endemic to Ulleung Island, Korea. J Plant Res. 2016;129:807–22.

Peterson A, Harpke D, Levichev IG, Beisenova S, Schnittler M, Peterson J. Morphological and molecular investigations of Gagea (Liliaceae) in southeastern Kazakhstan with special reference to putative altitudinal hybrid zones. Plant Syst Evol. 2016;302:985–1007.

Mason AS, Snowdon RJ. Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species. Plant Biol. 2016;18:883–92.

Vallejo-Marín M, Cooley AM, Lee MY, Folmer M, McKain MR, Puzey JR. Strongly asymmetric hybridization barriers shape the origin of a new polyploid species and its hybrid ancestor. Am J Bot. 2016;103:1272–88.

Song BH, Wang XQ, Wang XR, Ding KY, Hong DY. Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine. Mol Ecol. 2003;12:2995–3001.

Gao J, Wang B, Mao JF, Ingvarsson P, Zeng QY, Wang XR. Demography and speciation history of the homoploid hybrid pine Pinus densata on the Tibetan Plateau. Mol Ecol. 2012;21:4811–27.

Liu BB, Abbott RJ, Lu ZQ, Tian B, Liu JQ. Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Mol Ecol. 2014;23:3013–27.

Wang ZF, Jiang YZ, Bi H, Lu ZQ, Ma YZ, Yang XY, Chen NN, Tian B, Liu BB, Mao XX et al. Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Mol Plant. 2021;14:208–22.

Zhang JL, Zhang CQ, Gao LM, Yang JB, Li HT. Natural hybridization origin of Rhododendron agastum (Ericaceae) in Yunnan, China: inferred from morphological and molecular evidence. J Plant Res. 2007;120:457–63.

Milne RI, Abbott RJ. Reproductive isolation among two interfertile Rhododendron species: low frequency of post-F1 hybrid genotypes in alpine hybrid zones. Mol Ecol. 2008;17:1108–21.

Ma YP, Milne RI, Zhang CQ, Yang JB. Unusual patterns of hybridization involving a narrow endemic Rhododendron species (Ericaceae) in Yunnan, China. Am J Bot. 2010;97:1749–57.

Yan LJ, Burgess KS, Milne R, Fu CN, Li DZ, Gao LM. Asymmetrical natural hybridization varies among hybrid swarms between two diploid Rhododendron species. Ann Bot. 2017;120:51–61.

Liao RL, Ma YP, Gong WC, Chen G, Sun WB, Zhou RC, Marczewski T. Natural hybridization and asymmetric introgression at the distribution margin of two Buddleja species with a large overlap. BMC Plant Biol. 2015;15:146.

Zhang NN, Ma YP, Folk RA, Yu JJ, Pan YZ, Gong X. Maintenance of species boundaries in three sympatric Ligularia (Senecioneae, Asteraceae) species. J Integr Plant Biol. 2018;60:986–99.

Zieliński P, Dudek K, Arntzen JW, Palomar G, Niedzicka M, Fijarczyk A, Liana M, Cogălniceanu D, Babik W. Differential introgression across newt hybrid zones: evidence from replicated transects. Mol Ecol. 2019;28:4811–24.

Arnold ML, Bulger MR, Burke JM, Hempel AL, Williams JH. Natural hybridization: how low can you go and still be important? Ecology. 1999;80:371–81.

Abbott RJ, Brennan AC. Altitudinal gradients, plant hybrid zones and evolutionary novelty. Philos Trans R Soc B-Biol Sci. 2014;369:20130346.

Whitham TG. Plant hybrid zones as sinks for pests. Science. 1989;244:1490–3.

Sshweitzer JA, Martinsen GD, Whitham TG. Cottonwood hybrids gain fitness of both parents: a mechanism for their long-term persistence? Am J Bot. 2002;89:981–90.

James JK, Abbott RJ. Recent, allopatric, homoploid hybrid speciation: the origin of Senecio squalidus [Asteraceae], in the British isles from a hybrid zone on mount Etna. Sicily Evolution. 2005;59:2533–47.

De La Torre AR, Wang TL, Jaquish B, Aitken SN. Adaptation and exogenous selection in a Picea glauca x Picea engelmannii hybrid zone: implications for forest management under climate change. New Phytol. 2014;201:687–99.

Freeman DC, Turner WA, McArthur ED, Graham JH. Characterization of a narrow hybrid zone between two subspecies of big sagebrush (Artemisia tridentata: Asteraceae). 1991;78:805–15.

Wang H, Mcarthur ED, Sanderson SC, Graham JH, Freeman DC. Narrow hybrid zone between two subspecies of big sagerush (Artemisia Tridentata: Asteraceae). IV. reciprocal transplant experiments. Evolution. 1997;51:95–102.

Miglia KJ, Mcarthur ED, Redman RS, Rodrigue RJ, Zak JC, Freeman DC. Genotype, soil type, and locale effects on reciprocal transplant vigor, endophyte growth, and microbial functopnal diversity of a narrow sagerush hybrid zone in Salt Creek Canyon,Utah. Am J Bot. 2007;94:425–36.

Hodges SA, Armold ML. Floral and ecological isolation between Aquilegia formosa and Aquilegia pubescens. Proc Nati Acad Sci USA 1994;91:2493–6.

Raudnitschka D, Hensen I, Oberprieler C. Introgressive hybridization of Senecio hercynicus and S. ovatus (Compositae, Senecioneae) along an altitudinal gradient in Harz National Park (Germany). Syst Biodivers. 2007;5:333-44.

Arnold ML. Natural hybridization and evolution. Place:Oxford University Press;1997.

Rieseberg LH. Hybrid origins of plant species. Annu Rev Ecol Syst. 1997;28:359–89.

Abbott RJ, Barton NH, Good JM. Genomics of hybridization and its evolutionary consequences. Mol Ecol. 2016;25:2325–32.

Arnold ML, Ballerini ES, Brothers AN. Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana irises. Heredity. 2012;108:159–66.

Baiz MD, Tucker PK, Cortés-Ortiz L. Multiple forms of selection shape reproductive isolation in a primate hybrid zone. Mol Ecol. 2019;28:1056–69.

Smith KL, Hale JM, Kearney MR, Austin JJ, Melville J. Molecular patterns of introgression in a classic hybrid zone between the Australian tree frogs, Litoria ewingii and L. paraewingi: evidence of a tension zone. Mol Ecol. 2013;22:1869–83.

Hülber K, Sonnleitner M, Suda J, Krejčíková J, Schönswetter P, Schneeweiss GM, Winkler M. Ecological differentiation, lack of hybrids involving diploids, and asymmetric gene flow between polyploids in narrow contact zones of Senecio carniolicus (syn. Jacobaea carniolica, Asteraceae). Ecol Evol. 2015;5:1224–34.

Testo WL, Watkins JE, Jr., Barrington DS. Dynamics of asymmetrical hybridization in North American wood ferns: reconciling patterns of inheritance with gametophyte reproductive biology. New Phytol. 2015;206:785–95.

Rieseberg LH, Carney SE. Plant hybridization. New Phytol. 1998;140:599–624.

Abbott RJ. Plant speciation across environmental gradients and the occurrence and nature of hybrid zones. J Syst Evol. 2017;55:238–58.

Arntzen JW, Vries WD, Canestrelli D, Martínez-Solano I. Hybrid zone formation and contrasting outcomes of secondary contact over transects in common toads. Mol Ecol. 2017;26:5663–75.

Pickup M, Brandvain Y, Fraïsse C, Yakimowski S, Barton NH, Dixit T, Lexer C, Cereghetti E, Field DL. Mating system variation in hybrid zones: facilitation, barriers and asymmetries to gene flow. New Phytol. 2019;224:1035–47.

Anderson E. Hybridization of the habitat. Evolution. 1948;2:1–9.

Hall RJ. Hybridization helps colonizers become conquerors. Proc Natl Acad Sci U S A. 2016;113:9963–4.

Barrera-Guzmán AO, Aleixo A, Shawkey MD, Weir JT. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc Natl Acad Sci U S A. 2018;115:E218-25.

Leroy T, Louvet JM, Lalanne C, Le Provost G, Labadie K, Aury JM, Delzon S, Plomion C, Kremer A. Adaptive introgression as a driver of local adaptation to climate in European white oaks. New Phytol. 2020;226:1171–82.

Liu YF, Li DW, Zhang Q, Song C, Zhong CH, Zhang XD, Wang Y, Yao XH, Wang ZP, Zeng SH et al. Rapid radiations of both kiwifruit hybrid lineages and their parents shed light on a two-layer mode of species diversification. New Phytol. 2017;215:877–90.

Chamberlain D, Hyam R, Argent G, Fairweather G, Walter KS. The genus Rhododendron: its classification and synonymy.Place:Royal Botanic Garden Edinburgh;1996.

Milne RI. Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a tertiary relict distribution. Mol Phylogen Evol. 2004;33:389–401.

Soza VL, Lindsley D, Waalkes A, Ramage E, Patwardhan RP, Burton JN, Adey A, Kumar A, Qiu RL, Shendure J et al. The Rhododendron genome and chromosomal organization provide insight into shared whole-genome duplications across the heath family (Ericaceae). Genome Biol Evol. 2019;11:3353–71.

Yan LJ, Liu J, Möller M, Zhang L, Zhang XM, Li DZ, Gao LM. DNA barcoding of Rhododendron (Ericaceae), the largest Chinese plant genus in biodiversity hotspots of the Himalaya-Hengduan Mountains. Mol Ecol Resour. 2015;15:932–44.

Zou JY, Luo YH, Burgess KS, Tan SL, Zheng W, Fu CN, Xu K, Gao LM. Joint effect of phylogenetic relatedness and trait selection on the elevational distribution of Rhododendron species. J Syst Evol. 2020. https://doi.org/10.1111/jse.12690.

Shrestha N, Su XY, Xu XT, Wang ZH. The drivers of high Rhododendron diversity in south-west China: Does seasonality matter? J Biogeogr. 2018;45:438–47.

Handel-Mazzetti H. Die Abnahme eines Teiles verpflichtet zur Abnanme des ganzen Werkes. Symbolae Sinicae. 1936;7:775.

Zha HG, Milne RI, Sun H. Morphological and molecular evidence of natural hybridization between two distantly related Rhododendron species from the Sino-Himalaya. Bot J Linn Soc. 2008;156:119–29.

Ma YP, Zhang CQ, Zhang JL, Yang JB. Natural hybridization between Rhododendron delavayi and R. cyanocarpum (Ericaceae), from morphological, molecular and reproductive evidence. J Integr Plant Biol. 2010;52:844-51.

Zhuang P. Progress on the fertility of Rhododendron. Biodiversity Science. 2019;27(3):327–38.

Yan LJ, Gao LM, Li DZ. Molecular evidence for natural hybridization between Rhododendron spiciferum and R. spinuliferum (Ericaceae). J Syst Evol. 2013;51:426–34.

Richards TJ, Walter GM, McGuigan K, Ortiz-Barrientos D. Divergent natural selection drives the evolution of reproductive isolation in an Australian wildflower. Evolution. 2016;70:1993–2003.

Seehausen O. Conditions when hybridization might predispose populations for adaptive radiation. J Evol Biol. 2013;26:279–81.

Milne RI, Davies C, Prickett R, Inns LH, Chamberlain DF. Phylogeny of Rhododendron subgenus Hymenanthes based on chloroplast DNA markers: between-lineage hybridisation during adaptive radiation? Plant Syst Evol. 2010;285:233–44.

Fu CN, Mo ZQ, Yang JB, Cai J, Ye LJ, Zou JY, Qin HT, Zheng W, Hollingsworth PM, Li DZ, Gao LM. Testing genome skimming for species discrimination in the large and taxonomically difficult genus Rhododendron. Mol Ecol Resour. 2021;00:1–11.

Ding WN, Ree RH, Spicer RA, Xing YW. Ancient orogenic and monsoon-driven assembly of the world’s richest temperate alpine flora. Science. 2020;369,578–581.

Zha HG, Milne RI, Sun H. Asymmetric hybridization in Rhododendron agastum: a hybrid taxon comprising mainly F1s in Yunnan, China. Ann Bot. 2010;105:89–100.

Marczewski T, Chamberlain DF, Milne RI. Hybridization in closely related Rhododendron species: half of all species-differentiating markers experience serious transmission ratio distortion. Ecol Evol. 2015;5:3003–22.

Ma YP, Xie WJ, Sun WB, Marczewski T. Strong reproductive isolation despite occasional hybridization between a widely distributed and a narrow endemic Rhododendron species. Sci Rep. 2016;6:19146.

Zhang JL, Ma YP, Wu ZK, Dong K, Zheng SL, Wang YY. Natural hybridization and introgression among sympatrically distributed Rhododendron species in Guizhou, China. Biochem Syst Ecol. 2017;70:268–73.

Zhang XM, Qin HT, Xie WJ, Ma YP, Sun WB. Comparative population genetic analyses suggest hybrid origin of Rhododendron pubicostatum, an endangered plant species with extremely small populations endemic to Yunnan, China. Plant Diversity. 2020;42:312–8.

Yan LJ, Burgess KS, Zheng W, Tao ZB, Li DZ, Gao LM. Incomplete reproductive isolation between Rhododendron taxa enables hybrid formation and persistence. J Integr Plant Biol. 2019;61:433–48.

Karrenberg S, Liu XD, Hallander E, Favre A, Herforth-Rahmé J, Widmer A. Ecological divergence plays an important role in strong but complex reproductive isolation in campions (Silene). Evolution. 2019;73:245–61.

Chapman MA, Hiscock SJ, Filatov DA. Genomic divergence during speciation driven by adaptation to altitude. Mol Biol Evol. 2013;30:2553–67.

Scopece G, Palma-Silva C, Cafasso D, Lexer C, Cozzolino S. Phenotypic expression of floral traits in hybrid zones provides insights into their genetic architecture. New Phytol. 2020;227:967–75.

Fulton M, Hodges SA. Floral isolation between Aquilegia formosa and Aquilegia pubescens. P Roy Soc B-Biol Sci. 1999;266:2247–52.

Giudicelli GC, Turchetto C, Teixeira MC, Freitas LB. Morphological and genetic characterization in putative hybrid zones of Petunia axillaris subsp. axillaris and subsp. parodii (Solanaceae). Bot J Linn Soc. 2019;191:353–64.

Barton NH. The role of hybridization in evolution. Mol Ecol. 2001;10:551–68.

Grant PR, Grant BR. Hybridization increases population variation during adaptive radiation. Proc Natl Acad Sci U S A. 2019;116:23216–24.

Chhatre VE, Evans LM, DiFazio SP, Keller SR. Adaptive introgression and maintenance of a trispecies hybrid complex in range-edge populations of Populus. Mol Ecol. 2018;27:4820–38.

Dudek K, Gaczorek TS, Zieliński P, Babik W. Massive introgression of major histocompatibility complex (MHC) genes in newt hybrid zones. Mol Ecol. 2019;28:4798–810.

Grant PR, Grant BR. Triad hybridization via a conduit species. Proc Natl Acad Sci U S A. 2020;117:7888–96.

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 1987;19(1):11–5.

Yang GQ, Chen YM, Wang JP, Guo C, Zhao L, Wang XY, Guo Y, Li L, Li DZ, Guo ZH. Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Methods. 2016;12:39.

Tang Y, Horikoshi M, Li WX. ggfortify: Unified interface to visualize statistical results of popular R packages. R Journal. 2016;8:474-85.

Team RC. Changes in R from version 3.4.2 to version 3.4.3. R Journal. 2017;9:568–70.

IBM Corp. Released 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk: IBM Corp.

Rochette NC, Rivera-Colón AG, Catchen JM. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol Ecol. 2019;28:4737–54.

Andrews S. FastQC a quality control tool for high throughput sequence data. http://www.bio.informatics.babraham.ac.uk/projects/fastqc/. 2014.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

Jeffery NW, DiBacco C, Wringe BF, Stanley RRE, Hamilton LC, Ravindran PN, Bradbury IR. Genomic evidence of hybridization between two independent invasions of European green crab (Carcinus maenas) in the Northwest Atlantic. Heredity. 2017;119:154–65.

Wringe BF, Stanley RRE, Jeffery NW, Anderson EC, Bradbury IR. HYBRIDDETECTIVE: A workflow and package to facilitate the detection of hybridization using genomic data in R. Mol Ecol Resour. 2017;17:e275-84.

Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.

Kamvar ZN, Tabima JF, Grünwald NJ. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ. 2014;2:e281.

Ginestet C. ggplot2: Elegant graphics for data analysis. J R Stat Soc Ser A-Stat Soc. 2011;174:245–6.

Anderson EC, Thompson EA. A model-based method for identifying species hybrids using multilocus genetic data. Genetics. 2002;160:1217–29.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.