Natural bone-mimicking nanopore-incorporated hydroxyapatite scaffolds for enhanced bone tissue regeneration

Chansong Kim1, Jun Hyuk Heo2, Cheolhyun Park1, Dai-Hwan Kim1, Gyu Sung Yi1, Ho Chang Kang3, Hyun Suk Jung1, Hyun Young Shin4, Jung Heon Lee5
1School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
2Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. [email protected].
3Probiomimetic Research Institute, Bundang Technopark, Seongnam, 13219, Republic of Korea.
4Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
5Biomedical Institute for Convergence at Sungkyunkwan University, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea. [email protected].

Tóm tắt

Abstract Background A considerable number of studies has been carried out to develop alloplastic bone graft materials such as hydroxyapatite (HAP) that mimic the hierarchical structure of natural bones with multiple levels of pores: macro-, micro-, and nanopores. Although nanopores are known to play many essential roles in natural bones, only a few studies have focused on HAPs containing them; none of those studies investigated the functions of nanopores in biological systems. Method We developed a simple yet powerful method to introduce nanopores into alloplastic HAP bone graft materials in large quantities by simply pressing HAP nanoparticles and sintering them at a low temperature. Results The size of nanopores in HAP scaffolds can be controlled between 16.5 and 30.2 nm by changing the sintering temperature. When nanopores with a size of ~ 30.2 nm, similar to that of nanopores in natural bones, are introduced into HAP scaffolds, the mechanical strength and cell proliferation and differentiation rates are significantly increased. The developed HAP scaffolds containing nanopores (SNPs) are biocompatible, with negligible erythema and inflammatory reactions. In addition, they enhance the bone regeneration when are implanted into a rabbit model. Furthermore, the bone regeneration efficiency of the HAP-based SNP is better than that of a commercially available bone graft material. Conclusion Nanopores of HAP scaffolds are very important for improving the bone regeneration efficiency and may be one of the key factors to consider in designing highly efficient next-generation alloplastic bone graft materials.

Từ khóa


Tài liệu tham khảo

10.5051/jpis.2017.47.6.388

10.1186/s40824-019-0157-y

Shin SY Rios HF Giannobile WV Oh TJ. Periodontal regeneration: current therapies: current therapies. Stem Cell Biol Tissue Eng Dent Sci. 2015:459–69. https://doi.org/10.1016/B978-0-12-397157-9.00040-0.

10.1016/j.bioactmat.2017.05.007

10.1007/s13206-020-4411-0

10.1186/s40824-019-0154-1

10.1097/01.prs.0000299386.73127.a7

10.1186/s40824-015-0039-x

10.1002/mabi.200900169

10.1007/s10856-012-4822-0

10.1021/nn405246h

10.1166/jnn.2015.11197

10.3390/ma13081907

10.3390/jfb11040073

10.1038/s41598-020-80608-3

10.1016/j.ceramint.2012.11.096

10.1016/j.actbio.2018.01.016

10.1016/j.colsurfb.2018.05.046

10.1038/s41598-018-19629-y

10.1007/s13233-011-0206-4

10.1038/s41598-017-00905-2

10.1016/j.jconrel.2020.09.006

10.1021/la902157z

10.1016/j.actbio.2011.03.019

10.1021/cg400308a

10.1016/j.ceramint.2013.11.060

10.1021/acs.cgd.6b00420

10.1002/jbm.a.30712

10.1007/s11845-014-1199-8

10.4137/BTRI.S36138

10.1021/ja036071q

10.1016/j.biomaterials.2016.01.012

10.1021/jacs.6b02262

10.1021/acsnano.9b04723

10.1039/c3nr00803g

10.1038/srep22898

Yuan H Kurashina K De Bruijn JD Li Y De Groot K Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799–1806. https://doi.org/10.1016/s0142-9612(99)00075-7 19.

10.1021/am402754h

10.1038/nmat4789

10.1039/C6NR06421C

10.1002/adhm.201601160

10.1039/C4RA02199A

10.1038/s41598-020-70155-2

10.1016/j.msec.2017.03.097

10.1007/s00590-012-1070-4

10.1021/acsami.6b05358

10.3390/ijms20174142

10.1016/j.jiec.2016.03.017

10.1016/j.apsusc.2020.146311

10.1021/acs.cgd.0c00975

Kawanobe Y, Honda M, Konishi T, Mizumoto M, Habuto Y, Kanzawa N, et al. Preparation of apatite microsphere with nano-size pores on the surface via salt-assisted ultrasonic spray-pyrolysis technique and its drug release behavior. J Aust Ceram Soc. 2011;47:6–10. 1:CAS:528:DC%2BC3MXitFKls7o%3D

Ramli RA, Adnan R, Bakar MA, Masudi SM. Synthesis and characterisation of pure nanoporous hydroxyapatite. J Phys Ther Sci. 2011;22:22–37.

10.3892/ijmm.2013.1516

10.1002/chem.201302835

10.1166/jbn.2014.1893

10.1016/j.actbio.2015.12.006

10.1039/D0TB01498B

Muralithran G Ramesh S. The effects of sintering temperature on the properties of hydroxyapatite. Ceram Int 2000;26:221–230. https://doi.org/10.1016/S0272-8842(99)00046-2 2.

Kravchenko VB Kopylov YL Kotel'nikove VA. Handbook of solid-state lasers section 3. Woodhead Publishing. 2013. https://doi.org/10.1533/9780857097507.1.54.

10.1016/j.nano.2019.01.018

10.1098/rsif.2011.0880

10.1016/j.biomaterials.2013.05.067

10.1021/acs.nanolett.8b03201

10.1007/s13206-020-4408-8

10.1021/acsami.1c12440

10.1021/acs.nanolett.9b02343

10.1016/j.tca.2006.04.013

10.1002/mabi.200900256

10.1016/j.msec.2016.01.012

10.1038/bonekey.2013.128

10.1021/acsomega.1c00824

10.3390/jfb2040308

10.1039/c3tb00531c

10.3390/ma8052480

10.2147/nano.2006.1.2.189

10.1016/j.actbio.2009.03.028

10.1002/jbm.a.32916

10.1021/acsnano.5b01052

10.1007/s10989-017-9613-5

Levi V González Flecha FL. Reversible fast-dimerization of bovine serum albumin detected by fluorescence resonance energy transfer. Biochim Biophys Acta 2002;1599:141–148. https://doi.org/10.1016/S1570-9639(02)00414-4 1-2.

Atmeh RF, Arafa IM, Alkhatib MA. Albumin aggregates: hydrodynamic shape and physico-chemical properties. Jordan J Chem. 2007;2:169–182. 1:CAS:528:DC%2BD1MXlsFWksbg%3D

10.1016/j.ijbiomac.2012.10.030

Yamada S Heymann D Bouler JM Daculsi G. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios. Biomaterials. 1997;18:1037–1041. https://doi.org/10.1016/s0142-9612(97)00036-7 15.

10.1002/jbm.a.33117

10.1016/j.biomaterials.2006.01.017