Natural and Synthetic Copper Phyllosilicates Studied by XPS

Cambridge University Press (CUP) - Tập 40 Số 5 - Trang 593-599 - 1992
C. Mosser1, A. Mosser2, Michelangelo Romeo2, Sabine Petit3, Alain Decarreau3
1Centre de Géochimie de la Surface (CNRS), Strasbourg, France
2Institut de Physique et Chimie des Matériaux de Strasbourg, Strasbourg Cedex, France
3Laboratoire de Pétrologie de la Surface, URA 721 du CNRS, Université de Poitiers, Poitiers Cedex, France

Tóm tắt

AbstractX-ray photoelectron spectroscopy (XPS) has been used to characterize the bonding state of Cu2+, Si4+, Al3+, and O2− ions in structural (octahedral and interlamellar) or adsorbed position in phyllosilicates. Five smectites, 5 kaolinites, and 1 chrysocolla with Cu(II) in known positions (octahedral, interlamellar, or surface adsorbed) have been investigated. Their spectra were compared with those of pure Cu metal and of pure Cu(I) and Cu(II) oxides.The line for Cu 2p3/2 (binding energy of 935.4 eV) and well-defined shake-up lines (binding energy of about 943 eV) observed after 1 hr of X-ray irradiation are characteristic of Cu(II) in phyllosilicate octahedral sites. But due to the photoreduction effect, they show Cu(I) oxidation states (Cu 2p3/2, binding energy of 933.2 eV and near absence of shake-up lines) for the phyllosilicates with adsorbed Cu or in interlamellar positions. The kinetics of photoreduction distinguishes octahedral from interlamellar positions, and the latter from a surface adsorbed position. The enlargement of the FWHM (full width at half maximum) of XPS lines has been used to describe crystallochemical parameters linked to local ordering around the probe cations. Crystallization produces decreasing O 1 s and Cu 2p (octahedral cation) line widths but has no effect on the Si 2p (tetrahedral cation) line width. The enlargement of FWHM for all ion lines of the lattice is linked to the nature (Cu > Mg > Al) and the number and amount of structural cations in the phyllosilicates.

Từ khóa


Tài liệu tham khảo

10.1080/00268977200101961

10.1016/0016-7037(88)90232-3

10.1016/S0070-4571(08)70022-0

10.1107/S0567740870001838

10.1346/CCMN.1977.0250612

10.1016/0012-821X(72)90029-5

10.1016/0009-2541(90)90238-3

10.1346/CCMN.1976.0240603

Creach, 1988, Accumulation supergène de cuivre en milieu latéritique: Etude pétrologique, cristallochimique et géochimique de l’altération du skarn de Santa Blandina (Itapeva, Bresil)

10.1016/0368-2048(74)85009-7

Seyama, 1988, Application of X-ray photoelectron spectroscopy to the study of silicate minerals, Kokiritsu Kogai Kenkyusho Kenkyu Hokoku (Research Report from the National Institute for Environmental Studies, Japan), 111, 125

Wallbank, 1973, Multielectron satellites in core electron photoemission from 3d° ions in solids, J. Phys., 6, L493

10.1111/j.1151-2916.1985.tb15223.x

10.1016/0038-1098(91)90605-U

10.1039/f19858100485

10.1180/claymin.1990.025.3.03

10.1016/0039-6028(88)90625-5

10.1016/0368-2048(77)85006-8

Petit, 1990, Etude cristallochimique de kaolinites ferrifères et cuprifères de synthèse (150-250°C)

10.1103/PhysRevLett.27.479

10.1016/0016-7037(85)90258-3

Siegbahn, 1967, ESCA: Atomic, Molecular, and Solid State Structure Studied by Means of Electron Spectroscopy

Wyckoff, 1963, Crystal Structures