Natively unfolded proteins: A point where biology waits for physics

Protein Science - Tập 11 Số 4 - Trang 739-756 - 2002
Vladimir N. Uversky1
1Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia

Tóm tắt

AbstractThe experimental material accumulated in the literature on the conformational behavior of intrinsically unstructured (natively unfolded) proteins was analyzed. Results of this analysis showed that these proteins do not possess uniform structural properties, as expected for members of a single thermodynamic entity. Rather, these proteins may be divided into two structurally different groups: intrinsic coils, and premolten globules. Proteins from the first group have hydrodynamic dimensions typical of random coils in poor solvent and do not possess any (or almost any) ordered secondary structure. Proteins from the second group are essentially more compact, exhibiting some amount of residual secondary structure, although they are still less dense than native or molten globule proteins. An important feature of the intrinsically unstructured proteins is that they undergo disorder–order transition during or prior to their biological function. In this respect, the Protein Quartet model, with function arising from four specific conformations (ordered forms, molten globules, premolten globules, and random coils) and transitions between any two of the states, is discussed.

Từ khóa


Tài liệu tham khảo

10.1111/j.1432-1033.1978.tb12154.x

10.1016/S0076-6879(73)27030-1

10.1006/jmbi.1998.2355

Alber T., 1982, The role of mobility in the substrate binding and catalytic machinery of enzymes, Ciba Found. Symp., 93, 4

10.1021/bi00171a004

10.1038/313156a0

10.1073/pnas.47.9.1309

10.1085/jgp.15.3.341

Aswad D.W., 1981, A specific substrate from rabbit cerebellum for guanosine 3′:5′‐monophosphate‐dependent protein kinase. I. Purification and characterization, J. Biol. Chem., 256, 3487, 10.1016/S0021-9258(19)69635-3

10.1110/ps.00601

10.1073/pnas.97.23.12391

10.1074/jbc.273.9.4831

10.1074/jbc.274.16.10693

10.1021/bi00427a002

10.1016/S0092-8674(00)81037-5

10.1021/bi991433l

10.1074/jbc.274.22.15505

10.1006/jmbi.2000.3545

10.1038/276362a0

10.1016/0022-2836(78)90246-2

10.1006/jmbi.1997.1485

10.1073/pnas.96.13.7250

10.1021/bi0019545

10.1016/S1093-3263(00)00136-4

10.1016/0022-2836(90)90200-6

10.1021/bi9923555

10.1111/j.1432-1033.1981.tb05642.x

10.1111/j.1432-1033.1980.tb06123.x

10.1006/jmbi.1999.2711

10.1002/pro.5560050210

10.1038/nsb0498-253

10.1021/bi00072a025

Cozens B., 1984, Size and shape of rabbit muscle calsequestrin, J. Biol. Chem., 259, 6248, 10.1016/S0021-9258(20)82133-4

10.1021/bi970561b

10.1021/bi971952t

10.1021/bi00315a030

10.1021/bi001975z

10.1021/bi0024005

10.1146/annurev.bi.60.070191.004051

10.1006/bbrc.1999.1803

10.1016/S0021-9258(18)45957-1

10.1073/pnas.94.25.13452

10.1016/S0925-4439(00)00094-6

Dunker A.K., 1998, Protein disorder and the evolution of molecular recognition: Theory, predictions and observations, Pac. Symp. Biocomput., 3, 473

10.1016/S1093-3263(00)00138-8

Dunker A.K., 1997, On the importance of being disordered, PDB Newslett., 81, 3

10.1016/S0006-3495(93)81124-X

10.1038/nsb0298-148

10.1021/bi00396a015

10.1016/0168-9452(96)04332-4

10.1007/978-1-4757-2508-7

Feigin L.A., 1987, Structural snalysis by small‐angle X‐ray and neutron scattering

10.1038/363038a0

10.1038/5803

10.1002/cber.18940270364

10.1006/bbrc.2000.4146

10.1021/bi972494r

Flory P.J., 1953, Principles of polymer chemistry

10.1016/B978-0-444-89372-7.50017-8

10.1016/S0167-4838(99)00209-5

Fujio H., 1985, Native and non‐native conformation‐specific antibodies directed to the loop region of hen egg‐white lysozyme., J. Biochem. (Tokyo), 98, 949, 10.1093/oxfordjournals.jbchem.a135375

Furie B., 1979, Conformation‐specific antibodies as probes of the gamma‐carboxyglutamic acid‐rich region of bovine prothrombin. Studies of metal‐induced structural changes, J. Biol. Chem., 254, 9766, 10.1016/S0021-9258(19)83582-2

Garner E., 1998, Predicting disordered regions from amino acid sequence: Common themes despite different structural characterization, Genome Informatics, 9, 201

10.1021/bi00040a037

Gatewood J.M., 1990, Zinc‐induced secondary structure transitions in human sperm protamines, J. Biol. Chem., 265, 20667, 10.1016/S0021-9258(17)30555-0

10.1006/jmbi.1999.2740

10.1006/jmbi.1997.0954

10.1006/jmbi.1997.0953

Glatter O., 1982, Small angle X‐ray scattering.

Grossberg A.Yu., 1989, Statistical physics of macromolecules

10.1016/S0196-9781(98)00132-6

10.1002/prot.1061

10.1023/A:1008382027065

He Z., 1993, Ca(2+)‐induced folding and aggregation of skeletal muscle sarcoplasmic reticulum calsequestrin. The involvement of the trifluoperazine‐binding site, J. Biol. Chem., 268, 24635, 10.1016/S0021-9258(19)74513-X

Hemmings H.G., 1984, DARPP‐32, a dopamine‐and adenosine 3′:5′‐monophosphate‐regulated phosphoprotein enriched in dopamine‐innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus, J. Biol. Chem., 4, 99

10.1021/bi002078y

10.1111/j.1432-1033.1986.tb09356.x

10.1074/jbc.274.30.21297

10.1093/oxfordjournals.jbchem.a021813

10.1074/jbc.271.3.1379

10.1016/S0167-4838(97)00175-1

10.1093/protein/11.5.349

10.1002/pro.5560030505

10.1016/0968-0004(79)90298-6

10.1042/bst0151009

10.1126/science.2218495

10.1110/ps.29401

10.1021/bi00093a012

10.1021/bi00498a001

10.1110/ps.8.4.788

10.1074/jbc.273.6.3718

10.1146/annurev.bb.17.060188.001045

10.1074/jbc.273.47.31145

10.1074/jbc.270.34.19853

10.1006/jmbi.1993.1064

10.1002/pro.5560060219

10.1016/S0167-4838(96)00190-2

10.1021/bi991105l

10.1016/S0167-4838(97)00092-7

10.1046/j.1432-1327.2000.01738.x

10.1111/j.1432-1033.1995.0370e.x

10.1073/pnas.93.21.11504

10.1023/A:1021031227197

10.1126/science.271.5253.1247

Li X., 2000, Comparing predictors of disordered protein, Genome Informatics, 11, 172

Li X., 1999, Predicting protein disorders for N‐, C‐, and internal regions, Genome Informatics, 10, 30

10.1515/bchm3.1996.377.9.555

10.1016/S0092-8674(00)81599-8

10.1006/jmbi.1994.1173

10.1111/j.1399-3011.1985.tb03220.x

Love J.J.1999.Biophysical characterization of HMG‐1 box domain of the lymphoid enhancer binding factor‐1.PhD. Thesis University of California San Diego.

10.1021/bi991599m

10.1016/S0021-9258(18)48255-5

Lynn A., 1999, Heme binding and polymerization by Plasmodium falciparum histidine rich protein II: Influence of pH on activity and conformation, conformation, 459, 267

10.1073/pnas.54.1.253

10.1002/prot.340040204

10.1139/o85-102

10.1126/science.1519061

10.1021/bi00476a026

Mikhalyi E., 1978, Application of proteolytic enzymes to protein structure studies

Mirsky A.E., 1936, On the structure of native, denatured and coagulated proteins, Proc. Natl. Acad. Sci., 22, 439, 10.1073/pnas.22.7.439

10.1016/S1097-2765(00)80027-1

10.1038/381335a0

Mullen G.P., 1993, Sequential proton NMR resonance assignments, circular dichroism, and structural properties of a 50‐residue substrate‐binding peptide from DNA polymerase I, I, 301, 174

10.1093/oxfordjournals.jbchem.a122607

10.1021/cr60108a003

10.1111/j.1432-1033.1978.tb12383.x

Pahel G., 1993, Structural and functional characterization of the HPV16 E7 protein expressed in bacteria, J. Biol. Chem., 268, 26018, 10.1016/S0021-9258(19)74487-1

10.1073/pnas.97.23.12565

10.1021/bi992770x

10.1006/jmbi.1997.1369

10.1038/386657a0

10.1007/s002490050218

10.1016/0968-0004(93)90111-Y

10.1016/S0065-3233(08)60460-X

10.1021/bi00504a006

10.1016/S0065-3233(08)60546-X

10.1016/0014-5793(94)80231-9

10.1016/S1074-5521(99)80075-1

10.1016/S0014-5793(97)01091-0

10.1074/jbc.271.23.13716

Romero P., 1998, Sequence data analysis for long distorted regions prediction in the calcineurin family, Genome Informatics, 8, 110

10.1023/A:1006678623815

Romero P., 1997, Identifying disordered regions in proteins from amino acid sequence, Proc IEEE Int. Conf. Neuronal Networks 1997, 1, 90

Romero P., 1998, Thousands of proteins likely to have long disordered regions, Pac. Symp. Biocomput., 3, 437

10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3

10.1146/annurev.bb.24.060195.003333

Schmitz M.L., 1994, Structural and functional analysis of the NF‐kappa B p65 C terminus. An acidic and modular transactivation domain with the potential to adopt an alpha‐helical conformation, conformation, 269, 25613

Schulz G.E., 1979, Molecular mechanism of biological recognition, 79

10.1016/S0021-9258(19)51080-8

10.1006/jmbi.1996.0535

10.1002/bip.360310111

10.1096/fasebj.10.1.8566543

10.1021/bi00429a003

10.1002/1097-0282(200102)58:2<138::AID-BIP30>3.0.CO;2-W

10.1042/0264-6021:3560151

10.1126/science.8303294

Stellwagen E., 1972, The conformation of horse heart apocytochromec, J. Biol. Chem., 247, 8074, 10.1016/S0021-9258(20)81811-0

10.1074/jbc.271.13.7593

10.1093/protein/10.2.99

Tanford C., 1961, Physical chemistry of macromolecules.

10.1016/S0065-3233(08)60401-5

10.1021/bi0026472

10.1016/S0014-5793(97)00238-X

10.1002/prot.1089

10.1042/bj3290395

Thomas J., 1991, Expression in Escherichia coli and characterization of the heat‐stable inhibitor of the cAMP‐dependent protein kinase, J. Biol. Chem., 266, 10906, 10.1016/S0021-9258(18)99105-2

10.1002/pro.5560010808

10.1021/bi00211a042

Uversky V.N., 1994, Gel‐permeation chromatography as a unique instrument for quantitative and qualitative analysis of protein denaturation and unfolding, Int. J. Bio‐Chromatogr., 1, 103

Uversky V.N., 1997, Diversity of compact forms of denatured globular proteins Protein, Pept. Lett., 4, 355, 10.2174/092986650406221017162116

Uversky V.N., 1998, How many molten globule states there exist?, Biofizika (Moscow), 43, 416

Uversky V.N., 1999, A multiparametric approach to studies of self‐organization of globular proteins., Biochemistry (Moscow), 64, 250

10.1046/j.0014-2956.2001.02649.x

10.1021/bi00176a006

10.1006/jmbi.1996.0018

10.1016/S1359-0278(96)00020-X

10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7

10.1021/bi990752

10.1006/bbrc.1999.2013

10.1006/jmbi.1998.1741

10.1074/jbc.M105343200

10.1074/jbc.M010907200

10.1021/pr0155127

10.1016/0301-4622(96)00009-9

Venyaminov S.Yu., 1981, Absorption and Circular Dichroism Spectra of Individual Proteins from Escherichia Coli Ribosomes

10.1021/bi961799n

10.1038/347575a0

10.1016/S1093-3263(00)00125-X

10.1111/j.1399-3011.1994.tb00371.x

10.1073/pnas.82.16.5255

10.1016/0076-6879(95)46006-3

10.1016/0097-8485(93)85006-X

10.1016/0097-8485(94)85023-2

10.1016/S0076-6879(96)66035-2

10.1093/emboj/19.5.807

10.1006/jmbi.1999.3110

10.1021/bi00089a050

10.1074/jbc.270.21.12578

Yoo S.H., 1990, Ca2(+)‐induced conformational change and aggregation of chromogranin A, J. Biol. Chem., 265, 14414, 10.1016/S0021-9258(18)77318-3

10.1126/science.1060089

10.1021/bi9811157

10.1007/BF00398413

10.1073/pnas.93.24.13659

10.1073/pnas.111145098