Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

Nature Communications - Tập 5 Số 1
Ming Gong1, Wu Zhou2, Ming‐Jong Tsai3, Jigang Zhou4, Mingyun Guan1, Meng‐Chang Lin1, Bo Zhang1, Yongfeng Hu4, Di‐Yan Wang1, Yang Jiang1, Stephen J. Pennycook5, Bing‐Joe Hwang3, Hongjie Dai1
1Department of Chemistry, Stanford University, Stanford, 94305, California, USA
2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, 37831, Tennessee, USA
3Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan, ROC
4Canadian Light Source Inc., Saskatoon, SK S7N 0X4, Saskatchewan, Canada
5Department of Materials Science and Engineering, The University of Tennessee, Knoxville, 37996, Tennessee, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Crabtree, G. W., Dresselhaus, M. S. & Buchanan, M. V. The hydrogen economy. Phys. Today 57, 39–44 (2004).

Dresselhaus, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

Carmo, M., Fritz, D. L., Merge, J. & Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).

Holladay, J. D., Hu, J., King, D. L. & Wang, Y. An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009).

Zeng, K. & Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energ. Combust. 36, 307–326 (2010).

Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

Choi, C. L. et al. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 6, 921–928 (2013).

Tueysuez, H., Hwang, Y. J., Khan, S. B., Asiri, A. M. & Yang, P. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 6, 47–54 (2013).

Hall, D. E. Electrodes for alkaline water electrolysis. J. Electrochem. Soc. 128, 740–746 (1981).

Janjua, M. B. I. & Leroy, R. L. Electrocatalyst performance in industrial water electrolysers. Int. J. Hydrogen Energy 10, 11–19 (1985).

Sun, Y., Delucchi, M. & Ogden, J. The impact of widespread deployment of fuel cell vehicles on platinum demand and price. Int. J. Hydrogen Energy 36, 11116–11127 (2011).

Brown, D. E., Mahmood, M. N., Turner, A. K., Hall, S. M. & Fogarty, P. O. Low overvoltage electrocatalysts for hydrogen evolving electrodes. Int. J. Hydrogen Energy 7, 405–410 (1982).

Brown, D. E., Mahmood, M. N., Man, M. C. M. & Turner, A. K. Preparation and characterization of low overvoltage transition-metal alloy electrocatalysts for hydrogen evolution in alkaline-solutions. Electrochim. Acta 29, 1551–1556 (1984).

Endoh, E., Otouma, H., Morimoto, T. & Oda, Y. New raney-nickel composite-coated electrode for hydrogen evolution. Int. J. Hydrogen Energy 12, 473–479 (1987).

Hu, H. R. et al. Kinetics of hydrogen evolution in alkali leaching of rapidly quenched Ni-Al alloy. Appl. Catal. A-Gen. 252, 173–183 (2003).

Birry, L. & Lasia, A. Studies of the hydrogen evolution reaction on Raney nickel-molybdenum electrodes. J. Appl. Electrochem. 34, 735–749 (2004).

Damian, A. & Omanovic, S. Ni and Ni-Mo hydrogen evolution electrocatalysts electrodeposited in a polyaniline matrix. J. Power Sources 158, 464–476 (2006).

Lupi, C., Dell'Era, A. & Pasquali, M. Nickel-cobalt electrodeposited alloys for hydrogen evolution in alkaline media. Int. J. Hydrogen Energy 34, 2101–2106 (2009).

McKone, J. R., Sadtler, B. F., Werlang, C. A., Lewis, N. S. & Gray, H. B. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. Acs Catal. 3, 166–169 (2013).

Popczun, E. J. et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013).

Sheng, W. et al. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energ. Environ. Sci. 7, 1719–1724 (2014).

Vilekar, S. A., Fishtik, I. & Datta, R. Kinetics of the hydrogen electrode reaction. J. Electrochem. Soc. 157, B1040–B1050 (2010).

Skulason, E. et al. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 114, 18182–18197 (2010).

Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5, 909–913 (2006).

Sheng, W., Myint, M., Chen, J. G. & Yan, Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energ. Environ. Sci. 6, 1509–1512 (2013).

Gong, M. et al. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).