Nanophotonic technologies for single-photon devices
Tóm tắt
The progress in nanofabrication has made possible the realization of optic nanodevices able to handle single photons and to exploit the quantum nature of single-photon states. In particular, quantum cryptography (or more precisely quantum key distribution, QKD) allows unconditionally secure exchange of cryptographic keys by the transmission of optical pulses each containing no more than one photon. Additionally, the coherent control of excitonic and photonic qubits is a major step forward in the field of solid-state cavity quantum electrodynamics, with potential applications in quantum computing. Here, we describe devices for realization of single photon generation and detection based on high resolution technologies and their physical properties. Particular attention will be devoted to the description of single-quantum dot sources based on photonic crystal microcavites optically and electrically driven: the electrically driven devices is an important result towards the realization of single photon source “on demand”. A new class of single photon detectors, based on superconducting nanowires, the superconducting single-photon detectors (SSPDs) are also introduced: the fabrication techniques and the design proposed to obtain large area coverage and photon number-resolving capability are described.
Tài liệu tham khảo
P.N. Prasad, Nanophotonics, John Wiley & Sons, Inc., New Jersey, USA, 2004.
G.E. Moore, “Cramming more components onto integrated circuits”, Electronics 38, 114–117 (1965).
D. Bouwmeester, A.K. Ekert, and A. Zeilinger, The Physics of Quantum Information, Springer, Berlin, 2000.
A. Fiore, C. Zinoni, B. Alloing, C. Monat, L. Balet, L.H. Li, N. Le Thomas, R. Houdr., L. Lunghi, M. Francardi, A. Gerardino, and G. Patriarche, “Telecom-wavelength single-photon sources for quantum communications”, J. Phys. Condens. Mat. 19, 225005 (2007).
R. Loudon, The Quantum Theory of Light, Oxford University Press, 2000.
H.J. Kimble, M. Dagenais, and L. Mandel, “Photon anti-bunching in resonance fluorescence”, Phys. Rev. Lett. 39, 691–695 (1977).
T. Basché, W.E. Moerner, M. Orrit, and H. Talon, “Photon antibunching in the fluorescence of a single dye molecule trapped in a solid”, Phys. Rev. Lett. 69, 1516 (1992).
M. Oxborrow and A.G. Sinclair, “Single-photon sources”, Contemp. Phys. 46, 173 (2005).
C. Santori, D. Fattal, J. Vuckovic, G.S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device”, Nature 419, 594 (2002).
J.M Gírard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities”, J. Lightwave Technol. 17, 2089–2095 (1999).
P. Michler, A. Kiraz, C. Becher, W.V. Schoenfeld, P.M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device”, Science 290, 2282 (2000).
C. Santori, M. Pelton, G. Solomon, Y. Dale, and Y. Yamamoto, “Triggered single photons from a quantum dot”, Phys. Rev. Lett. 86, 1502 (2001).
V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M.E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments”, Appl. Phys. Lett. 78, 2476 (2001).
M. De Vittorio, F. Pisanello, L. Martiradonna, A. Qualtieri, T. Stomeo, A. Bramati, and R. Cingolani, “Recent advances on single photon sources based on single colloidal nano-crystals”, Opto.Electron. Rev. 18, 1–9 (2010).
A. Fiore, U. Oesterle, R.P. Stanley, R. Houdre, F. Lelarge, M. Ilegems, P. Borri, W. Langbein, D. Birkedal, J.M. Hvam, M. Cantoni, and F. Bobard, “Structural and electrooptical characteristics of quantum dots emitting at 1.3 ěm on gallium arsenide”, IEEE J. Quantum Elect. 37, 1050 (2001).
J.X. Chen, A. Markus, A. Fiore, U. Oesterle, R.P. Stanley, J.F. Carlin, R. Houdre, M. Ilegems, L. Lazzarini, L. Nasi, M.T. Todaro, E. Piscopiello, R. Cingolani, M. Catalano, J. Katcki, and J. Ratajczak, “Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 ěm applications”, J. Appl. Phys. 91, 6710 (2002).
R.H. Hadfield, “Single-photon detectors for optical quantum information applications”, Nat. Photonics 3, 696–705 (2009).
M.B. Ward, O.Z. Karimov, D.C. Unitt, Z.L. Yuan, P. See, D.G. Gevaux, A.J. Shields, P. Atkinson, and D.A. Ritchie, “On-demand single-photon source for 1.3 μm telecom fiber”, Appl. Phys. Lett. 86, 201111 (2005).
C. Zinoni, B. Alloing, L.H. Li, F. Marsili, A. Fiore, L. Lunghi, A. Gerardino, Y.B. Vakhtomin, K.V. Smirnov, and G. Gol’tsman, “Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors”, Appl. Phys. Lett. 91, 031106 (2007).
E. Knill, R. Laflamme, and G.J. Milburn, “A scheme for efficient quantum computation with linear optics”, Nature 409, 46–52 (2001).
C. Simon, H. De Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories”, Phys. Rev. Lett 98, 190503 (2007).
S. Cova, A. Longoni, and A. Andreoni “Towards picoseconds resolution with single-photon avalanche diodes”, Rev. Sci. Instrum. 52, 408–412 (1981).
B. Cabrera, RM Clarke, P. Colling, A.J. Miller. S. Nam, and R.W. Romani, “Detection of single infrared, optical and ultraviolet photons using superconducting transition edge sensors”, Appl Phys. Lett. 73, 735–737 (1998).
G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector”, Appl. Phys. Lett. 79, 705 (2001).
G. Gol’tsman, O. Minaeva, A. Korneev, M. Tarkhov, I. Rubtsova, A. Divochiy, I. Milostnaya, G. Chulkova, N. Kaurova, B. Voronov, D. Pan, J. Kitaygorsky, A. Cross, A. Pearlman, I. Komissarov, W. Slysz, M. Wegrzecki, P. Grabiec, and R. Sobolewski, “Middle-infrared to visible.light ultrafast superconducting single-photon detectors”, IEEE T. Appl. Supercond. 17, 246 (2007)
M. Tarkhov, J. Claudon, J.P. Poizat, A. Korneev, A. Divochiy, O. Minaeva, V. Seleznev, N. Kaurova, B. Voronov, A.V. Semenov, and G. Gol’tsman, “Ultrafast reset time of superconducting single photon detectors”, Appl. Phys. Lett. 92, 241112 (2008).
A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G.N. Gol’tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Słysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Sensitivity and gigahertz counting performance of NbN superconducting single.photon detectors”, Appl. Phys. Lett. 84, 5338 (2004).
K.S. Il’in, M. Lindgren, M. Currie, A.D. Semenov, G.N. Gol’tsman, R. Sobolewski, S.I. Cherednichenko, and E.M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors”, Appl. Phys. Lett. 76, 2752–2754 (2000).
M. Francardi, L. Balet, A. Gerardino, C. Monat, C. Zinoni, L.H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Quantum dot photonic crystal nanocavities at 1300 nm for telecom-wavelength single-photon sources”, Phys. Status Solidi (c) 3, 3693–3696 (2006).
A. Gerardino, M. Francardi, L. Balet, C. Monat, C. Zinoni, B. Alloing, L.H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Fabrication and characterization of point defect photonic crystal nanocavities at telecom wavelength”, Microelectron. Eng. 84, 1480–1484 (2007).
L. Balet, M. Francardi, A. Gerardino, N. Chauvin, B. Alloing, C. Zinoni, C. Monat, L.H. Li, N. Le Thomas, R. Houdré, and A. Fiore, “Enhanced spontaneous emission rate from a single InAs quantum dot in a photonic crystal nanocavity at telecom wavelengths”, Appl. Phys. Lett. 91, 123115 (2007).
F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D.S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L.H. Li, R. Houdré, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities”, Phys. Rev. B78, 041401(R) (2008).
M. Francardi, A. Gerardino, L. Balet, N. Chauvin, D. Bitauld, C. Zinoni, L.H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Towards a LED based on a photonic crystal nanocavity for single photon sources at telecom wavelength”, Microelelectron. Eng. 85, 1162–1165 (2008).
M. Francardi, A. Gerardino, L. Balet, N. Chauvin, D. Bitauld, C. Zinoni, L.H. Li, B. Alloing, N. Le Thomas, R. Houdré, and A. Fiore, “Cavity-enhanced photonic crystal light-emitting diode at 1300 nm”, Microelelectron. Eng. 86, 1093–1095 (2009).
M. Francardi, L. Balet, A. Gerardino, N. Chauvin, D. Bitauld, L.H. Li, B. Alloing, and A. Fiore, “Enhanced spontaneous emission in a photonic-crystal light-emitting diode”, Appl. Phys. Lett. 93, 091107 (2008).
E.M. Purcell, “Spontaneous emission probabilities at radio frequencies”, Phys. Rev. 69, 681 (1946).
H. Benisty, J.M. Gérard, and R. Houdré, Confined Photon Systems — Fundamentals and Applications, Lectures from the Summerschool held in Cargèse, edited by J. Rarity and C. Weisbuch J. Rarity and C. Weisbuch Corsica, 3–15 August 1998.
K.J. Vahala, “Optical microcavities”, Nature 424, 839–846 (2003).
E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics”, Phys. Rev. Lett. 58, 2059 (1987).
S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486 (1987).
J.D. Joannopoulos, R.D. Meade, and J.N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, 1995.
Y. Akahane, T. Asano, B.S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal”, Nature 425, 944 (2003).
E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect”, Appl. Phys. Lett. 88, 041112 (2006).
T.D. Happ, I.I. Tartakovskii, V.D. Kulakovskii, J.P. Reithmaier, M. Kamp, and A. Forchel, “Enhanced light emission of InxGa1-xAs quantum dots in a two-dimensional photonic-crystal defect microcavity”, Phys. Rev. B66, 041303 (R) (2002).
T. Baba, D. Sano, K. Nozaki, K. Inoshita, Y. Kuroki, and F. Koyama, “Observation of fast spontaneous emission decay in GaInAsP photonic crystal point defect nanocavity at room temperature”, Appl. Phys. Lett. 85, 3989 (2004).
A.F. Koenderink, M. Kafesaki, C.M. Soukoulis, and V. Sandoghdar, “Spontaneous emission in the near field of two-dimensional photonic crystals”, Opt. Lett. 30, 3210–3212 (2005).
A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P.M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes”, Science 308, 1158–1161 (2005).
W.H. Chang, W.Y. Chen, H.S. Chang, T.P. Hsieh, J.I. Chyi, and T.M. Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities”, Phys. Rev. Lett. 96, 117401 (2006).
Y. Akahane, T. Asano, B. Song, and S. Noda, “Development of high-q photonic nanocavity using two-dimensional photonic crystal slabs”, SEI Technical Review 59, 21–26 (2005).
B. Alloing, C. Zinoni, V. Zwiller, L.H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, “Growth and characterization of single quantum dots emitting at 1300 nm”, Appl. Phys. Lett. 86, 101908 (2005).
O. Painter, A. Husain, A. Scherer, P.T. Lee, I. Kim, J.D. O’Brien, and P.D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array”, IEEE Photonic. Tech. L. 12, 1126 (2000).
T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D.G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity”, Nature 432, 200–203 (2004).
H.G. Park, J.K. Hwang, J. Huh, H.Y. Ryu, S.H. Kim, J.S. Kim, and Y.H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers”, IEEE J. Quantum Elect. 38, 1353 (2002).
S. Kohmoto, H. Nakamura, T. Ishikawa, and K. Asakawa, “Site-controlled self-organization of individual InAs quantum dots by scanning tunnelling probe-assisted nanolithography”, Appl. Phys. Lett. 75, 3488 (1999).
M.H. Baier, E. Pelucchi, E. Kapon, S. Varoutsis, M. Gallart, I. Robert-Philip, and I. Abram, “Single photon emission from site-controlled pyramidal quantum dots”, Appl. Phys. Lett. 84, 648 (2004).
S. Kiravittaya, A. Rastelli, and O.G. Schmidt, “Photoluminescence from seeded three-dimensional InAs/GaAs quantum-dot crystals”, Appl. Phys. Lett. 88, 43112 (2006).
J.S. Kim, M. Kawabe, and N. Koguchi, “Ordering of high-quality InAs quantum dots on defect-free nanoholes”, Appl. Phys. Lett. 88, 72107 (2006).
P. Atkinson, S.P. Bremner, D. Anderson, G.A.C. Jones, and D.A. Ritchie, “Size evolution of size controlled InAs quantum dots grown by molecular beam epitaxy on prepatterned GaAs substrates”, J. Vac. Sci. Technol. B24, 1523 (2006).
A. Faraon, D. Englund, I. Fushman, J. Vučkovič, N. Stoltz, and P. Petroff, “Local quantum dot tuning on photonic crystal chips”, Appl. Phys. Lett. 90, 213110 (2007).
S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities”, Nat. Photonics 1, 449–458 (2007).
D. Dalacu, S. Frédérick, P.J. Poole, G.C. Aers, and R.L. Williams, “Postfabrication fine-tuning of photonic crystal microcavities in InAs/InP quantum dot membranes”, Appl. Phys. Lett. 87, 151107 (2005).
S.W. Leonard, J.P. Mondia, H.M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann, “Tunable two-dimensional photonic crystals using liquid crystal infiltration”, Phys. Rev. B61, R2389 (2000).
F. Intonti, S. Vignolini, V. Türck, M. Colocci, P. Bettotti, L. Pavesi, S.L. Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits”, Appl. Phys. Lett. 89, 211117 (2006).
F. Intonti, S. Vignolini, F. Riboli, M. Zani, D.S. Wiersma, L. Balet, L.H. Li, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli “Tuning of photonic crystal cavities by controlled removal of locally infiltrated water”, Appl. Phys. Lett. 95, 173112 (2009).
S. Mosor, J. Hendrickson, B.C. Richards, J. Sweet, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O.B. Shchekin, and D.G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon”, Appl. Phys. Lett. 87, 141105 (2005).
S. Strauf, M.T. Rakher, I. Carmeli, K. Hennessy, C. Meier, A. Badolato, M.J.A. De Dood, P.M. Petroff, E.L. Hu, E.G. Gwinn, and D. Bouwmeester, “Frequency control of photonic crystal membrane resonators by monolayer deposition”, Appl. Phys. Lett. 88, 043116 (2006).
K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoglu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation”, Appl. Phys. Lett. 89, 041118 (2006).
G.N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector”, Appl. Phys. Lett. 79, 705–707 (2001).
C. Zinoni, B. Alloing, C. Monat, V. Zwiller, L.H. Li, A. Fiore, L. Lunghi, A. Gerardino, H. de Riedmatten, H. Zbinden, and N. Gisin, “Time-resolved and antibunching experiments on single quantum dots at 1300 nm”, Appl. Phys. Lett. 88, 131102 (2006).
H.G. Park, S.H. Kim, S.H. Kwon, Y.G. Ju, J.K. Yang, J.H. Baek, S.B. Kim, and Y.H. Lee, “Electrically driven single-cell photonic crystal laser”, Science 305, 1444–1447 (2004).
M.T. Hill, Y.S. Oei, B. Smalbrugge, Y. Zhu, T. De Vries, P.J. VanVeldhoven, F.W.M. Van Otten, T.J. Eijkemans, J.P. Turkiewicz, H. DeWaardt, E.J. Geluk, S.H. Kwon, Y.H. Lee, R. Notzel, and M.K. Smit, “Lasing in metallic-coated nanocavities”, Nat. Photonics 1, 589 (2007).
C. Bockler, S. Reitzenstein, C. Kistner, R. Debusmann, A. Loeffler, T. Kida, S. Hofling, A. Forchel, L. Grenouillet, J. Claudon, and J.M. Gerard, “Electrically driven high-Q quantum dot-micropillar cavities”, Appl. Phys. Lett. 92, 091107 (2008).
D.J.P Ellis, A.J. Bennett, S.J. Dewhurst, C.A. Nicoll, D.A. Ritchie, and A.J. Shields, “Cavity-enhanced radiative emission rate in a single-photon-emitting diode operating at 0.5 GHz”, New J. Phys. 10, 043035 (2008).
H. Altug, D. Englund, and J. Vuckovic, “Ultra-fast photonic crystal nanocavity laser”, Nat. Phys 2, 484–488 (2006).
N. Chauvin, C. Zinoni, M. Francardi, A. Gerardino, L. Balet, B. Alloing, L.H. Li, and A. Fiore, “Controlling the charge environment of single quantum dots in a photonic-crystal cavity”, Phys. Rev. B80, 241306(R) (2009).
H. Takesue, S.W. Nam, Q. Zhang, R.H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors”, Nat. Photonics 1, 343 (2007).
R.H. Hadfield, M.J. Stevens, R.P. Mirin, and S.W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors”, J. Appl. Phys. 101, 103104 (2007).
A. Korneev, A. Lipatov, O. Okunev, G. Chulkova, K. Smirnov, G. Gol’tsman, J. Zhang, W. Slysz, A. Verevkin, and R. Sobolewski, “GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits”, Microelectron. Eng. 69, 274–278 (2003).
B.S. Robinson, A.J. Kerman, E.A. Dauler, R.J. Barron, D.O. Caplan, M.L. Stevens, J.J. Carney, S.A. Hamilton, J.K. Yang, and K.K. Berggren, “781 Mbit/s photon-counting optical communications using a superconducting nanowire detector”, Opt. Lett. 31, 444–446 (2006).
R.E. Warburton, A. McCarthy, A.M. Wallace, S. Hernandez-Marin, R.H. Hadfield, S. W. Nam, and G.S. Buller, “Sub-centimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength”, Opt. Lett. 32, 2266–2268 (2007).
A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G.N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range”, Appl. Phys. Lett. 80, 4687–4689 (2002).
A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G.N. Gol’tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, “Sensitivity and gigahertz counting performance of NbN superconducting single photon detectors”, Appl. Phys. Lett. 84, 5338–5340 (2004).
A.J. Kerman, E.A. Dauler, W.E. Keicher, J.K.W. Yang, K.K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic inductance-limited reset time of superconducting nanowire photon counters”, Appl. Phys. Lett. 88, 111116 (2006).
R.J. Collins, R.H. Hadeld, V. Fernandez, S.W. Nam, and G.S. Buller, “Low timing jitter detector for gigahertz quantum key distribution”, Electron. Lett. 43, 180–182 (2007).
D. Rosenberg, A.E. Lita, A.J. Miller, and S.W. Nam, “Noise-free high-efficiency photon-number-resolving detectors”, Phys. Rev. A71, 061803 (2005).
R.H. Hadfield, M.J. Stevens, S.S. Gruber, A.J. Miller, R.E. Schwall, R.P. Mirin, and S.W. Nam, “Single photon source characterization with a superconducting single photon detector”, Opt. Express 13, 10846–10853 (2005).
K.M. Rosfjord, J.K.W. Yang, E.A. Dauler, A.J. Kerman, V. Anant, B.M. Voronov, G.N. Gol’tsman, and K.K. Berggren, “Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating”, Opt. Express 14, 527 (2006).
F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Lévy, “Single-photon detectors for optical quantum information applications”, Opt. Express 16, 3191–3196 (2008).
S.N. Dorenbos, E.M. Reiger, U. Perinetti, V. Zwiller, T. Zijlstra, and T.M. Klapwijk, “Low noise superconducting single photon detectors on silicon”, Appl. Phys. Lett. 93, 131101 (2008).
A.J. Shields, “Semiconductor quantum light sources”, Nat. Photonics 1, 215–223 (2007).
F. Marsili, A. Gaggero, L.H. Li, A. Surrente, R. Leoni, F. Lévy, and A. Fiore, “High quality superconducting NbN thin films on GaAs”, Supercond. Sci. Tech. 22, 095013 (2009).
A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, R. Sanjine, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications”, to be published.
F. Mattioli, R. Leoni, A. Gaggero, M.G. Castellano, P. Carelli, F. Marsili, and A. Fiore, “Electrical characterization of superconducting single photon detectors”, J. Appl. Phys. 101, 054302 (2007).
A.J. Kerman, E.A. Dauler, J.K.W. Yang, K.M. Rosfjord, V. Anant, K.K. Berggren, G.N. Gol’tsman, and B.M. Voronov, “Constriction-limited detection efficiency of superconducting nanowiresingle-photon detectors”, Appl. Phys. Lett. 90, 101110 (2007).
D. Bitauld, F. Marsili, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, and F. Levy, “NbN nanowire superconducting single photon detectors fabricated on MgO substrate”, J. Mod. Optics 56, 395–400 (2009).
M. Ejrnaes, A. Casaburi, O. Quaranta, S. Marchetti, A. Gaggero, F. Mattioli, R. Leoni, S. Pagano, and R. Cristiano, “Characterization of parallel superconducting nanowire single photon detectors”, Supercond. Sci. Tech. 22, 055006 (2009).
M. Ejrnaes, R. Cristiano, O. Quaranta, S. Pagano, A. Gaggero, F. Mattioli, R. Leoni, B. Voronov, and G. Gol’tsman, “A cascade switching superconducting single photon detector”, Appl. Phys. Lett. 91, 262509 (2007).
A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K.G. Lagoudakis, M. Benkahoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecom wavelength”, Nat. Photonics 2, 302–306 (2008).
M. Tarkhov, M. Claudon, J. Poizat, J.P. Korneev, A. Divochiy, A. Minaeva, O. Seleznev, V. Kaurova, N. Voronov, B. Semenov, and A.V. Goltsman, “Ultrafast reset time of superconducting single photon detectors”, Appl. Phys. Lett. 92, 241112 (2008).
A.E. Lita, A.J. Miller, and S.W. Nam, “Counting near-infrared single-photons, with 95% efficiency”, Opt. Express 16, 3032–3040 (2008).
E.A. Dauler, B.S. Robinson, A.J. Kerman, J.K.W. Yang, K.M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K.K. Berggren, “Multi-element superconducting nanowire single-photon detector”, IEEE T. Appl. Supercon. 17, 279 (2007).
A.J. Shields, “Semiconductor quantum light sources”, Nat. Photonics 1, 215–223 (2007).