Nanoparticle-Based Delivery of RNAi Therapeutics: Progress and Challenges
Tóm tắt
Từ khóa
Tài liệu tham khảo
Fire, 1998, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans, Nature, 391, 806, 10.1038/35888
Zamore, 2000, RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals, Cell, 101, 25, 10.1016/S0092-8674(00)80620-0
Elbashir, 2001, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature, 411, 494, 10.1038/35078107
Davidson, 2011, Current prospects for RNA interference-based therapies, Nat. Rev. Genet., 12, 329, 10.1038/nrg2968
Burnett, 2012, RNA-based therapeutics: current progress and future prospects, Chem. Biol., 19, 60, 10.1016/j.chembiol.2011.12.008
Lares, 2010, RNAi and small interfering RNAs in human disease therapeutic applications, Trends Biotechnol., 28, 570, 10.1016/j.tibtech.2010.07.009
Dejneka, 2008, Ocular biodistribution of bevasiranib following a single intravitreal injection to rabbit eyes, Mol. Vis., 14, 997
Cho, 2009, Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth, Proc. Natl. Acad. Sci. U. S. A., 106, 7137, 10.1073/pnas.0812317106
Kleinman, 2008, Sequence- and target-independent angiogenesis suppression by siRNA via TLR3, Nature, 452, 591, 10.1038/nature06765
Whitehead, 2009, Knocking down barriers: advances in siRNA delivery, Nat. Rev. Drug Discov., 8, 129, 10.1038/nrd2742
Dominska, 2010, Breaking down the barriers: siRNA delivery and endosome escape, J. Cell Sci., 123, 1183, 10.1242/jcs.066399
Wang, 2008, Nanotechnology and aptamers: applications in drug delivery, Trends Biotechnol., 26, 442, 10.1016/j.tibtech.2008.04.006
Kim, 2009, Engineered polymers for advanced drug delivery, Eur. J. Pharm. Biopharm., 71, 420, 10.1016/j.ejpb.2008.09.021
Guo, 2012, Uniqueness, advantages, challenges, solutions, and perspectives in therapeutics applying RNA nanotechnology, Nucleic Acid Ther., 22, 226, 10.1089/nat.2012.0350
Shen, 2012, Nanovector delivery of siRNA for cancer therapy, Cancer Gene Ther., 19, 367, 10.1038/cgt.2012.22
Lee, D.U., Huang, W., Rittenhouse, K.D., and Jessen, B. (2012). Retina Expression and Cross-Species Validation of Gene Silencing by PF-655, a Small Interfering RNA Against RTP801 for the Treatment of Ocular Disease. J. Ocul. Pharmacol. Ther.
Sarret, 2010, Direct application of siRNA for in vivo pain research, Methods Mol. Biol., 623, 383, 10.1007/978-1-60761-588-0_25
Barik, 2011, Intranasal delivery of antiviral siRNA, Methods Mol. Biol., 721, 333, 10.1007/978-1-61779-037-9_20
DeVincenzo, 2010, A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus, Proc. Natl. Acad. Sci. US A, 107, 8800, 10.1073/pnas.0912186107
Juliano, 2008, Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides, Nucleic Acids Res., 36, 4158, 10.1093/nar/gkn342
Guerra, 2011, Barriers to non-viral vector-mediated gene delivery in the nervous system, Pharm. Res., 28, 1843, 10.1007/s11095-010-0364-7
Boerman, 2006, Intravenously administered short interfering RNA accumulates in the kidney and selectively suppresses gene function in renal proximal tubules, Drug Metab. Dispos., 34, 1393, 10.1124/dmd.106.009555
Wang, 2010, Delivery of siRNA therapeutics: barriers and carriers, Aaps. J., 12, 492, 10.1208/s12248-010-9210-4
Danquah, 2011, Extravasation of polymeric nanomedicines across tumor vasculature, Adv. Drug Deliv. Rev., 63, 623, 10.1016/j.addr.2010.11.005
Yuan, 1995, Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size, Cancer Res., 55, 3752
Moghimi, 2001, Long-circulating and target-specific nanoparticles: theory to practice, Pharmacol. Rev., 53, 283
Matsumura, 1986, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs, Cancer Res., 46, 6387
Greish, 2007, Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines, J. Drug Target., 15, 457, 10.1080/10611860701539584
Jain, 1987, Transport of molecules in the tumor interstitium: a review, Cancer Res., 47, 3039
Boucher, 1990, Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: implications for therapy, Cancer Res., 50, 4478
Perrault, 2010, In vivo assembly of nanoparticle components to improve targeted cancer imaging, Proc. Natl. Acad. Sci. USA, 107, 11194, 10.1073/pnas.1001367107
Netti, 2000, Role of extracellular matrix assembly in interstitial transport in solid tumors, Cancer Res., 60, 2497
Wong, 2011, Multistage nanoparticle delivery system for deep penetration into tumor tissue, Proc. Natl. Acad. Sci. USA, 108, 2426, 10.1073/pnas.1018382108
Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol., 2, 751, 10.1038/nnano.2007.387
Gullotti, 2009, Extracellularly activated nanocarriers: a new paradigm of tumor targeted drug delivery, Mol. Pharm., 6, 1041, 10.1021/mp900090z
Davis, 2009, The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic, Mol. Pharm., 6, 659, 10.1021/mp900015y
Davis, 2010, Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles, Nature, 464, 1067, 10.1038/nature08956
Schroeder, 2010, Lipid-based nanotherapeutics for siRNA delivery, J. Intern. Med., 267, 9, 10.1111/j.1365-2796.2009.02189.x
Nguyen, 2012, Nucleic acid delivery: the missing pieces of the puzzle?, Acc. Chem. Res., 45, 1153, 10.1021/ar3000162
Kumari, 2010, Endocytosis unplugged: multiple ways to enter the cell, Cell Res., 20, 256, 10.1038/cr.2010.19
Varkouhi, 2011, Endosomal escape pathways for delivery of biologicals, J. Control. Release, 151, 220, 10.1016/j.jconrel.2010.11.004
Boussif, 1995, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine, Proc. Natl. Acad. Sci. USA, 92, 7297, 10.1073/pnas.92.16.7297
Cho, 2003, Polycation gene delivery systems: escape from endosomes to cytosol, J. Pharm. Pharmacol., 55, 721, 10.1211/002235703765951311
Turner, 2005, Cell-penetrating peptide conjugates of peptide nucleic acids (PNA) as inhibitors of HIV-1 Tat-dependent trans-activation in cells, Nucleic Acids Res., 33, 6837, 10.1093/nar/gki991
Shiraishi, 2005, Calcium ions effectively enhance the effect of antisense peptide nucleic acids conjugated to cationic tat and oligoarginine peptides, Chem. Biol., 12, 923, 10.1016/j.chembiol.2005.06.009
Abes, 2006, Endosome trapping limits the efficiency of splicing correction by PNA-oligolysine conjugates, J. Control. Release, 110, 595, 10.1016/j.jconrel.2005.10.026
Shiraishi, 2006, Photochemically enhanced cellular delivery of cell penetrating peptide-PNA conjugates, FEBS Lett., 580, 1451, 10.1016/j.febslet.2006.01.077
Blidner, 2008, Photoinduced RNA interference using DMNPE-caged 2'-deoxy-2'-fluoro substituted nucleic acids in vitro and in vivo, Mol. Biosyst., 4, 431, 10.1039/b801532e
Endoh, T., Sisido, M., and Ohtsuki, T. (2007). Photo inducible RNA interference using cell permeable protein carrier. Nucleic Acids Symp. Ser. (Oxf.), 127–128.
Endoh, 2008, Cellular siRNA delivery mediated by a cell-permeant RNA-binding protein and photoinduced RNA interference, Bioconjug. Chem., 19, 1017, 10.1021/bc800020n
Endoh, 2009, Spatial regulation of specific gene expression through photoactivation of RNAi, J. Control. Release, 137, 241, 10.1016/j.jconrel.2009.04.015
Braun, 2009, Laser-Activated Gene Silencing via Gold Nanoshell-siRNA Conjugates, ACS Nano, 3, 2007, 10.1021/nn900469q
Hammond, 2001, Argonaute2, a link between genetic and biochemical analyses of RNAi, Science, 293, 1146, 10.1126/science.1064023
Liu, 2004, Argonaute2 is the catalytic engine of mammalian RNAi, Science, 305, 1437, 10.1126/science.1102513
Sakurai, 2011, A role for human Dicer in pre-RISC loading of siRNAs, Nucleic Acids Res., 39, 1510, 10.1093/nar/gkq846
Matranga, 2005, Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes, Cell, 123, 607, 10.1016/j.cell.2005.08.044
Gibbings, 2009, Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity, Nat. Cell Biol., 11, 1143, 10.1038/ncb1929
Lee, 2009, Silencing by small RNAs is linked to endosomal trafficking, Nat. Cell Biol., 11, 1150, 10.1038/ncb1930
Sen, 2005, Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies, Nat. Cell Biol., 7, 633, 10.1038/ncb1265
Meister, 2004, Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs, Mol. Cell, 15, 185, 10.1016/j.molcel.2004.07.007
Davis, 2008, Nanoparticle therapeutics: an emerging treatment modality for cancer, Nat. Rev. Drug Discov., 7, 771, 10.1038/nrd2614
Petros, 2010, Strategies in the design of nanoparticles for therapeutic applications, Nat. Rev. Drug Discov., 9, 615, 10.1038/nrd2591
Zhang, 2008, Nanoparticles in medicine: therapeutic applications and developments, Clin. Pharmacol. Ther., 83, 761, 10.1038/sj.clpt.6100400
Fonseca, 2012, Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges, Acc. Chem. Res., 45, 1163, 10.1021/ar300048p
Torchilin, 2005, Recent advances with liposomes as pharmaceutical carriers, Nat. Rev. Drug Discov., 4, 145, 10.1038/nrd1632
Proffitt, 2002, AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience, J. Antimicrob. Chemother., 49, 21, 10.1093/jac/49.suppl_1.21
Hoekstra, 2007, Gene delivery by cationic lipids: in and out of an endosome, Biochem. Soc. Trans., 35, 68, 10.1042/BST0350068
Jeong, 2011, Self-assembled and nanostructured siRNA delivery systems, Pharm. Res., 28, 2072, 10.1007/s11095-011-0412-y
Uchida, 2002, Comparison of the efficiency and safety of non-viral vector-mediated gene transfer into a wide range of human cells, Biol. Pharm. Bull., 25, 891, 10.1248/bpb.25.891
Schafer, 2010, Liposome-polyethylenimine complexes for enhanced DNA and siRNA delivery, Biomaterials, 31, 6892, 10.1016/j.biomaterials.2010.05.043
Sakurai, 2011, Endosomal escape and the knockdown efficiency of liposomal-siRNA by the fusogenic peptide shGALA, Biomaterials, 32, 5733, 10.1016/j.biomaterials.2011.04.047
Grefhorst, 2008, Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates, Proc. Natl. Acad. Sci. U. S. A., 105, 11915, 10.1073/pnas.0805434105
Landesman, 2010, In vivo quantification of formulated and chemically modified small interfering RNA by heating-in-Triton quantitative reverse transcription polymerase chain reaction (HIT qRT-PCR), Silence, 1, 16, 10.1186/1758-907X-1-16
Aleku, 2008, Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression, Cancer Res., 68, 9788, 10.1158/0008-5472.CAN-08-2428
Strumberg, 2012, Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors, Int. J. Clin. Pharmacol. Ther., 50, 76, 10.5414/CPP50076
Majoros, 2009, Methotrexate delivery via folate targeted dendrimer-based nanotherapeutic platform, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 1, 502, 10.1002/wnan.37
Singha, K., Namgung, R., and Kim, W.J. (2011). Polymers in Small-Interfering RNA Delivery. Oligonucleotides.
Winkler, 2011, Nanomedicines based on recombinant fusion proteins for targeting therapeutic siRNA oligonucleotides, Ther. Deliv., 2, 891, 10.4155/tde.11.56
Ocana, 2012, Dendrimers as vectors for genetic material delivery to the nervous system, Curr. Med. Chem., 19, 5101, 10.2174/0929867311209025101
Kaneshiro, 2009, Targeted intracellular codelivery of chemotherapeutics and nucleic acid with a well-defined dendrimer-based nanoglobular carrier, Biomaterials, 30, 5660, 10.1016/j.biomaterials.2009.06.026
Shen, 2007, Importance of size-to-charge ratio in construction of stable and uniform nanoscale RNA/dendrimer complexes, Org. Biomol. Chem., 5, 3674, 10.1039/b711242d
Zhou, J., Neff, C.P., Liu, X., Zhang, J., Li, H., Smith, D.D., Swiderski, P., Aboellail, T., Huang, Y., Du, Q., Liang, Z., Peng, L., Akkina, R., and Rossi, J.J. (2011). Systemic Administration of Combinatorial dsiRNAs via Nanoparticles Efficiently Suppresses HIV-1 Infection in Humanized Mice. Mol. Ther., 2228–2238.
Agrawal, 2009, Functional delivery of siRNA in mice using dendriworms, ACS Nano, 3, 2495, 10.1021/nn900201e
Kim, 2008, LHRH receptor-mediated delivery of siRNA using polyelectrolyte complex micelles self-assembled from siRNA-PEG-LHRH conjugate and PEI, Bioconjug. Chem., 19, 2156, 10.1021/bc800249n
Yuan, 2010, Dendrimer-triglycine-EGF nanoparticles for tumor imaging and targeted nucleic acid and drug delivery, Oral Oncol., 46, 698, 10.1016/j.oraloncology.2010.07.001
Pun, 2004, Cyclodextrin-modified polyethylenimine polymers for gene delivery, Bioconjug. Chem., 15, 831, 10.1021/bc049891g
Davis, 2004, Cyclodextrin-based pharmaceutics: past, present and future, Nat. Rev. Drug Discov., 3, 1023, 10.1038/nrd1576
Davis, 2009, Design and development of IT-101, a cyclodextrin-containing polymer conjugate of camptothecin, Adv. Drug Deliv. Rev., 61, 1189, 10.1016/j.addr.2009.05.005
Alabi, 2012, Attacking the genome: emerging siRNA nanocarriers from concept to clinic, Curr. Opin. Pharmacol., 12, 427, 10.1016/j.coph.2012.05.004
Kang, 2010, Liver-targeted siRNA delivery by polyethylenimine (PEI)-pullulan carrier, Bioorg. Med. Chem., 18, 3946, 10.1016/j.bmc.2010.04.031
Hobel, 2010, Polyethylenimine/small interfering RNA-mediated knockdown of vascular endothelial growth factor in vivo exerts anti-tumor effects synergistically with Bevacizumab, J. Gene Med., 12, 287, 10.1002/jgm.1431
Schiffelers, 2004, Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle, Nucleic Acids Res., 32, e149, 10.1093/nar/gnh140
Biswal, 2010, Development of a targeted siRNA delivery system using FOL-PEG-PEI conjugate, Mol. Biol. Rep., 37, 2919, 10.1007/s11033-009-9853-3
Nie, 2011, Hepatocyte-targeted psiRNA delivery mediated by galactosylated poly(ethylene glycol)-graft-polyethylenimine in vitro, J. Biomater. Appl., 26, 255, 10.1177/0885328210364678
Moghimi, 2005, A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy, Mol. Ther., 11, 990, 10.1016/j.ymthe.2005.02.010
Li, 2013, A mesoporous silica nanoparticle - PEI - Fusogenic peptide system for siRNA delivery in cancer therapy, Biomaterials, 34, 1391, 10.1016/j.biomaterials.2012.10.072
Hom, 2010, Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells, Small, 6, 1185, 10.1002/smll.200901966
Breccia, 2011, Gemtuzumab ozogamicin for the treatment of acute promyelocytic leukemia: mechanisms of action and resistance, safety and efficacy, Expert Opin. Biol. Ther., 11, 225, 10.1517/14712598.2011.543895
Yao, 2012, Targeted Delivery of PLK1-siRNA by ScFv Suppresses Her2+ Breast Cancer Growth and Metastasis, Sci. Transl. Med., 4, 130ra148, 10.1126/scitranslmed.3003601
Song, 2005, Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors, Nat. Biotechnol., 23, 709, 10.1038/nbt1101
Kim, 2011, Antibody-mediated delivery of siRNAs for anti-HIV therapy, Methods Mol. Biol., 721, 339, 10.1007/978-1-61779-037-9_21
Kumar, 2008, T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice, Cell, 134, 577, 10.1016/j.cell.2008.06.034
Gump, 2007, TAT transduction: the molecular mechanism and therapeutic prospects, Trends Mol. Med., 13, 443, 10.1016/j.molmed.2007.08.002
Lundberg, 2007, Delivery of short interfering RNA using endosomolytic cell-penetrating peptides, FASEB J., 21, 2664, 10.1096/fj.06-6502com
Sugahara, 2009, Tissue-penetrating delivery of compounds and nanoparticles into tumors, Cancer Cell, 16, 510, 10.1016/j.ccr.2009.10.013
Feron, 2010, Tumor-penetrating peptides: a shift from magic bullets to magic guns, Sci. Transl. Med., 2, 34ps26, 10.1126/scitranslmed.3001174
Dupont, 2011, Penetratin story: an overview, Methods Mol. Biol., 683, 21, 10.1007/978-1-60761-919-2_2
Berry, 2008, Intracellular delivery of nanoparticles via the HIV-1 tat peptide, Nanomedicine (Lond.), 3, 357, 10.2217/17435889.3.3.357
Endoh, 2009, Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape, Adv. Drug Deliv. Rev., 61, 704, 10.1016/j.addr.2009.04.005
Xiong, 2011, Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin, ACS Nano, 5, 5202, 10.1021/nn2013707
Leng, 2005, Highly branched HK peptides are effective carriers of siRNA, J. Gene Med., 7, 977, 10.1002/jgm.748
Tuerk, 1992, RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase, Proc. Natl. Acad. Sci. USA, 89, 6988, 10.1073/pnas.89.15.6988
Famulok, 1999, Aptamers as tools in molecular biology and immunology, Curr. Top Microbiol. Immunol., 243, 123
Dassie, 2009, Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors, Nat. Biotechnol., 27, 839, 10.1038/nbt.1560
Zhou, 2008, Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy, Mol. Ther., 16, 1481, 10.1038/mt.2008.92
Zhou, 2009, Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells, Nucleic Acids Res., 37, 3094, 10.1093/nar/gkp185
Thiel, 2012, Delivery of chemo-sensitizing siRNAs to HER2+-breast cancer cells using RNA aptamers, Nucleic Acids Res., 40, 6319, 10.1093/nar/gks294
McNamara, 2006, Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras, Nat. Biotechnol., 24, 1005, 10.1038/nbt1223
Zhao, 2011, A nanocomplex that is both tumor cell-selective and cancer gene-specific for anaplastic large cell lymphoma, J. Nanobiotechnology, 9, 2, 10.1186/1477-3155-9-2
Kim, 2010, Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex, Biomaterials, 31, 4592, 10.1016/j.biomaterials.2010.02.030
Bagalkot, 2011, siRNA-aptamer chimeras on nanoparticles: preserving targeting functionality for effective gene silencing, ACS Nano, 5, 8131, 10.1021/nn202772p
Ye, X., Hemida, M., Zhang, H.M., Hanson, P., Ye, Q., and Yang, D. (2012). Current advances in Phi29 pRNA biology and its application in drug delivery. Wiley Interdiscip. Rev. RNA.
Guo, 2010, The emerging field of RNA nanotechnology, Nat. Nanotechnol., 5, 833, 10.1038/nnano.2010.231
Tarapore, 2011, Application of phi29 motor pRNA for targeted therapeutic delivery of siRNA silencing metallothionein-IIA and survivin in ovarian cancers, Mol. Ther., 19, 386, 10.1038/mt.2010.243
Liu, 2011, Fabrication of stable and RNase-resistant RNA nanoparticles active in gearing the nanomotors for viral DNA packaging, ACS Nano, 5, 237, 10.1021/nn1024658
Zhou, 2011, Dual functional RNA nanoparticles containing phi29 motor pRNA and anti-gp120 aptamer for cell-type specific delivery and HIV-1 inhibition, Methods, 54, 284, 10.1016/j.ymeth.2010.12.039