Nanomaterials modified electrodes for electrochemical detection of Sudan I in food
Tóm tắt
Từ khóa
Tài liệu tham khảo
Y. An, L. Jiang, J. Cao, C. Geng, L. Zhong, Sudan I induces genotoxic effects and oxidative DNA damage in HepG2 cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 627, 164–170 (2007)
P. Møller, H. Wallin, Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene. Mutat. Res-Rev Mutat. 462, 13–30 (2000)
F. Capitan, L.F. Capitán-Vallvey, M.D. Fernandez, I. De Orbe, R. Avidad, Determination of colorant matters mixtures in foods by solid-phase spectrophotometry. Anal. Chim. Acta 331, 141–148 (1996)
L. Di Donna, L. Maiuolo, F. Mazzotti, D. De Luca, G. Sindona, Assay of Sudan I contamination of foodstuff by atmospheric pressure chemical ionization tandem mass spectrometry and isotope dilution. Anal. Chem. 76, 5104–5108 (2004)
V. Vinothkumar, A. Sangili, S.M. Chen, T.W. Chen, A.M.V. Sethupathi, Voltammetric determination of sudan I by using Bi2WO6 nanosheets modified glassy carbon electrode. Int. J. Electrochem. Sci. 15, 2414–2429 (2020)
J. Zhang, M. Wang, S. Chao, W. Wang, Y. He, Z. Chen, Electrochemical detection of Sudan I by using an expanded graphite paste electrode. J. Electroanal. Chem. 685, 47–52 (2012)
M. Stiborová, B. Asfaw, P. Anzenbacher, L. Lešeticky, P. Hodek, The first identification of the benzenediazonium ion formation from a non-aminoazo dye, 1-phenylazo-2-hydroxynaphthalene (Sudan I) by microsomes of rat livers. Cancer Lett. 40, 319–326 (1988)
C.V. Di Anibal, M. Odena, I. Ruisánchez, M.P. Callao, Determining the adulteration of spices with Sudan I-II-II-IV dyes by UV–visible spectroscopy and multivariate classification techniques. Talanta 79, 887–892 (2009)
C. Tatebe, T. Ohtsuki, N. Otsuki, H. Kubota, K. Sato, H. Akiyama, Y. Kawamura, Extraction method and determination of Sudan I present in sunset yellow FCF by isocratic high-performance liquid chromatography. Am. J. Anal. Chem. 3, 570–573 (2012)
D. Taverna, L.D. Donna, F. Mazzotti, B. Policicchio, G. Sindona, High-throughput determination of Sudan Azo-dyes within powdered chili pepper by paper spray mass spectrometry. J. Mass Spectrom. 48, 544–547 (2013)
X.Y. Xu, X.G. Tian, L.G. Cai, Z.L. Xu, H.T. Lei, H. Wang, Y.M. Sun, Molecularly imprinted polymer based surface plasmon resonance sensors for detection of Sudan dyes. Anal. Methods 6, 3751–3757 (2014)
X. Ye, J. Zhang, H. Chen, X. Wang, F. Huang, Fluorescent nanomicelles for selective detection of sudan dye in pluronic F127 aqueous media. ACS Appl. Mater. Interfaces. 6, 5113–5121 (2014)
E. Mejia, Y. Ding, M.F. Mora, C.D. Garcia, Determination of banned sudan dyes in chili powder by capillary electrophoresis. Food Chem. 102, 1027–1033 (2007)
Y. Zhang, Z. Zhang, Y. Sun, Development and optimization of an analytical method for the determination of Sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO − -luminol chemiluminescence detection. J. Chromatogr. A 1129, 34–40 (2006)
P.L. Wu, F.Y. Li, Z.C. Huang, Q. Zhang, Visual detection of Sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles. Anal. Chem. 78, 5570–5577 (2006)
V.V. Tkach, M.V. Kushnir, S.C. de Oliveira, Y.G. Ivanushko, A.V. Velyka, A.F. Molodianu, L. Vaz, Electrochemical determination of sudan dyes and two manner to realize it: a theoretical investigation. Lett. Appl. NanoBioSci. 9, 1451–1458 (2020)
A. Ondrackova, M. Stiborova, L. Havran, K. A. R. O. L. I. N. A. Schwarzova-Peckova, M. Fojta, Electrochemistry of Sudan I and its derivates in aqueous media. In: 16th International Students Conference “Modern Anal. Chem. 110 (2020)
X. Li, X. Sun, M. Li, Detection of Sudan I in foods by a MOF-5/MWCNT modified electrode. Chem. Select 5, 12777–12784 (2020)
C. Yang, J. Zhao, J. Xu, C. Hu, S. Hu, A highly sensitive electrochemical method for the determination of Sudan I at polyvinylpyrrolidone modified acetylene black paste electrode based on enhancement effect of sodium dodecyl sulphate. J. Environ. Anal. Chem. 89, 233–244 (2009)
Y. Wang, Simultaneous determination of uric acid, xanthine and hypoxanthine at poly (pyrocatechol violet)/functionalized multi-walled carbon nanotubes composite film modified electrode. Colloids Surf. B 88, 614–621 (2011)
C. Xiao, X. Chu, Y. Yang, X. Li, X. Zhang, J. Chen, Hollow nitrogen-doped carbon microspheres pyrolyzed from self-polymerized dopamine and its application in simultaneous electrochemical determination of uric acid, ascorbic acid and dopamine. Biosens. Bioelectron. 26, 2934–2939 (2011)
Z. Xue, Y. Feng, H. Guo, C. Hu, A.M.M. Idris, J. Li, X. Lu, A novel electrocatalytic platform for separation of the overlapping voltammetric responses of AA. DA and UA. RSC Adv. 4, 5849–5852 (2014)
N. Baig, M. Sajid, T.A. Saleh, Recent trends in nanomaterial-modified electrodes for electroanalytical applications. Trends Anal. Chem. 111, 47–61 (2019)
M. Ghanei-Motlagh, M. Baghayeri, Determination of trace Tl(I) by differential pulse anodic stripping voltammetry using a novel modified carbon paste electrode. J. Electrochem. Soc. 167, (2020)
M. Nodehi, M. Baghayeri, R. Ansari, H. Veisi, Electrochemical quantification of 17α–Ethinylestradiol in biological samples using a Au/Fe3O4@TA/MWNT/GCE sensor. Mater. Chem. Phys. 244, (2020)
M. Nodehi, M. Baghayeri, R. Behazin, H. Veisi, Electrochemical aptasensor of bisphenol A constructed based on 3D mesoporous structural SBA-15-Met with a thin layer of gold nanoparticles. Microchem. J. 162, (2021)
M. Baghayeri, M. Ghanei-Motlagh, R. Tayebee, M. Fayazi, F. Narenji, Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As (III) in water resources. Anal. Chim. Acta 1099, 60–67 (2020)
M. Ghanei-Motlagh, M.A. Taher, M. Fayazi, M. Baghayeri, A. Hosseinifar, Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures. J. Electrochem. Soc. 166, B367 (2019)
M. Baghayeri, R. Ansari, M. Nodehi, I. Razavipanah, H. Veisi, Label-free electrochemical bisphenol A aptasensor based on designing and fabrication of a magnetic gold nanocomposite. Electroanalysis 30, 2160–2166 (2018)
M. Baghayeri, R. Ansari, M. Nodehi, H. Veisi, Designing and fabrication of a novel gold nanocomposite structure: application in electrochemical sensing of bisphenol A. Int. J. Environ. Anal. Chem. 98, 874–888 (2018)
M. Baghayeri, R. Ansari, M. Nodehi, I. Razavipanah, H. Veisi, Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Microchim. Acta 185, 1–9 (2018)
M. Baghayeri, H. Beitollahi, A. Akbari, S. Farhadi, Highly sensitive nanostructured electrochemical sensor based on carbon nanotubes-Pt nanoparticles paste electrode for simultaneous determination of levodopa and tyramine. Russ. J. Electrochem. 54, 292–301 (2018)
M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics 23, 1553–1562 (2017)
M. Baghayeri, A. Amiri, M. Fayazi, M. Nodehi, A. Esmaeelnia, Electrochemical detection of bisphenol A on a MWCNTs/CuFe2O4 nanocomposite modified glassy carbon electrode. Mater. Chem. Phys. 261, (2021)
M. Baghayeri, A. Amiri, B.S. Moghaddam, M. Nodehi, Cu-Based MOF for simultaneous determination of trace Tl(I) and Hg(II) by stripping voltammetry. J. Electrochem. Soc. 167, (2020)
M. Baghayeri, H. Veisi, Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens. Bioelectron. 74, 190–198 (2015)
M. Baghayeri, E.N. Zare, M.M. Lakouraj, A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly (p-phenylenediamine)@Fe3O4 nanocomposite. Biosens. Bioelectron. 55, 259–265 (2014)
H. Karimi-Maleh, M. Alizadeh, Y. Orooji, F. Karimi, M. Baghayeri, J. Rouhi, S. Tajik, H. Beitollahi, S. Agarwal, V.K. Gupta, S. Rajendran, S. Rostamnia, L. Fu, F. Saberi-Movahed, S. Malekmohammadi, Ind. Eng. Chem. Res. 60(2), 816–823 (2021)
C.I.L. Justino, T.A.P. Rocha-Santos, S. Cardoso, A.C. Duarte, Strategies for enhancing the analytical performance of nanomaterial-based sensors. TrACTrend. Anal. Chem. 47, 27–36 (2013)
C. Fenzl, T. Hirsch, A.J. Baeumner, Nanomaterials as versatile tools for signal amplification in (bio) analytical applications. TrAC Trend. Anal. Chem. 79, 306–316 (2016)
W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, F. Braet, Carbon nanomaterials in biosensors: should you use nanotubes or graphene? Angew. Chem. Int. Ed. 49, 2114–2138 (2010)
S.K. Vashist, D. Zheng, K. Al-Rubeaan, J.H.T. Luong, Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Sheu Biotechnol. Adv. 29, 169–188 (2011)
W. Sun, J. Hu, Voltammetric determination of theophylline in pharmaceutical formulations using aligned carbon nanotubes (ACNTs) film modified electrode. J. Anal. Chem. 68, 694–699 (2013)
H. Filik, A.A. Avan, S. Aydar, Simultaneous detection of ascorbic acid, dopamine, uric acid and tryptophan with Azure A-interlinked multi-walled carbon nanotube/gold nanoparticles composite modified electrode. Arab. J. Chem. 9, 471–480 (2016)
H.R. Zare, Z. Sobhani, M. Mazloum-Ardakani, Electrochemical behavior of electrodeposited rutin film on a multi-wall carbon nanotubes modified glassy carbon electrode: Improvement of the electrochemical reversibility and its application as a hydrazine sensor. J. Solid State Electrochem. 11, 971 (2007)
J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: a review on electrochemistry and applications for sensing. Electrochim. Acta 50, 3049–3060 (2005)
X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7, 1876–1902 (2011)
P. Bollella, G. Fusco, C. Tortolini, G. Sanzo, G. Favero, L. Gorton, R. Antiochia, Beyond graphene: electrochemical sensors and biosensors for biomarkers detection. Biosens. Bioelectron. 89, 152–166 (2017)
E.B. Bahadir, M.K. Sezgintürk, Applications of graphene in electrochemical sensing and biosensing. TrAC Trends Anal. Chem. 76, 1–14 (2016)
X.M. Chen, G.H. Wu, Y.Q. Jiang, Y.R. Wang, X. Chen, Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry. Analyst 136, 4631–6440 (2011)
J. Chang, G. Zhou, E.R. Christensen, R. Heideman, J. Chen, Graphene-based sensors for detection of heavy metals in water: a review. Anal. Bioanal. Chem. 406, 3957–3975 (2014)
X. Deng, H. Tang, J. Jiang, Recent progress in graphene-material-based optical sensors. Anal. Bioanal. Chem. 406, 6903–6916 (2014)
Q. Bao, K.P. Loh, Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6, 3677–3694 (2012)
F.W. Campbell, R.G. Compton, The use of nanoparticles in electroanalysis: an updated review. Anal. Bioanal. Chem. 396, 241–259 (2010)
L. Rassaei, F. Marken, M. Sillanpää, M. Amiri, C.M. Cirtiu, M. Sillanpää, Nanoparticles in electrochemical sensors for environmental monitoring. TrAC Trend. Anal. Chem. 30, 1704–1715 (2011)
V. Pareek, A. Bhargava, R. Gupta, N. Jain, J. Panwar, Synthesis and applications of noble Metal nanoparticles: a review. Adv. Sci. Eng. Med. 9, 527–544 (2017)
T.A. Rocha-Santos, Sensors and biosensors based on magnetic nanoparticles. TrAC Trend. Anal. Chem. 62, 28–36 (2014)
J. Ma, S. Guo, X. Guo, H. Ge, A mild synthetic route to Fe3O4@TiO2-Au composites: preparation, characterization and photocatalytic activity. Appl. Surf. Sci. 353, 1117–1125 (2015)
Y. Wang, S. Wang, H. Niu, Y. Ma, T. Zeng, Y. Cai, Z. Meng, Preparation of polydopamine coated Fe3O4 nanoparticles and their application for enrichment of polycyclic aromatic hydrocarbons from environmental water samples. J. Chromatogr. A 1283, 20–26 (2013)
A.A. Ensafi, H.A. Alinajafi, M. Jafari-Asl, B. Rezaei, F. Ghazaei, Cobalt ferrite nanoparticles decorated on exfoliated graphene oxide, application for amperometric determination of NADH and H2O2. Mater. Sci. Eng., C 60, 276–284 (2016)
Z. Eshaghzade, E. Pajootan, H. Bahrami, M. Arami, Facile synthesis of Fe3O4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. J. Taiwan Inst. Chem. Eng. 71, 91–105 (2017)
C.T. Matea, T. Mocan, F. Tabaran, T. Pop, O. Mosteanu, C. Puia, C. Iancu, L. Mocan, Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine 12, 5421 (2017)
P. Tian, L. Tang, K.S. Teng, S.P. Lau, Graphene quantum dots from chemistry to applications. Today Chem. 10, 221–258 (2018)
Z. Ranjbar-Navazi, Y. Omidi, M. Eskandani, S. Davaran, Cadmium-free quantum dot-based theranostics. TrAC Trends Anal. Chem. 118, 386–400 (2019)
K. Kalcher, Chemically modified carbon paste electrodes in voltammetric analysis. Electroanalysis 2, 419–433 (1990)
H. Beitollahi, H. Karimi-Maleh, H. Khabazzadeh, Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem. 80, 9848–9851 (2008)
H. Karimi-Maleh, M. Moazampour, M. Yoosefian, A.L. Sanati, F. Tahernejad-Javazmi, M. Mahani, An electrochemical nanosensor for simultaneous voltammetric determination of ascorbic acid and Sudan I in food samples. Food Anal. Methods 7, 2169–2176 (2014)
M. Elyasi, M.A. Khalilzadeh, H. Karimi-Maleh, High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem. 141, 4311–4317 (2013)
M. Najafi, M.A. Khalilzadeh, H. Karimi-Maleh, A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem. 158, 125–131 (2014)
J.B. Raoof, N. Teymoori, M.A. Khalilzadeh, ZnO nanoparticle ionic liquids carbon paste electrode as a voltammetric sensor for determination of sudan I in the presence of Vitamin B 6 in food samples. Food Anal. Methods 8, 885–892 (2015)
B.S. Jilani, P. Malathesh, C.D. Mruthyunjayachari, K.V. Reddy, Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: a voltammetric study. Mater. Chem. Phys. 239, (2020)
Q. Ye, X. Chen, J. Yang, D. Wu, J. Ma, Y. Kong, Fabrication of CuO nanoparticles-decorated 3D N-doped porous carbon as electrochemical sensing platform for the detection of Sudan I. Food Chem. 287, 375–381 (2019)
S. Palanisamy, K. Thangavelu, S.M. Chen, V. Velusamy, S.K. Ramaraj, Voltammetric determination of Sudan I in food samples based on platinum nanoparticles decorated on graphene-β-cyclodextrin modified electrode. J. Electroanal. Chem. 794, 64–70 (2017)
L. Li, Y. Zhang, T. Shang, H. Guo, X. Liu, X. Lu, Electrochemical study of Sudan I at ionic liquid-reduced graphene oxide modified electrode. J. Electroanal. Chem. 781, 218–221 (2016)
J. Li, H. Feng, J. Li, Y. Feng, Y. Zhang, D. Qian, Fabrication of gold nanoparticles-decorated reduced graphene oxide as a high performance electrochemical sensing platform for the detection of toxicant Sudan I. Electrochim. Acta 167, 226–236 (2015)
E. Prabakaran, K. Pandian, Amperometric detection of Sudan I in red chili powder samples using Ag nanoparticles decorated graphene oxide modified glassy carbon electrode. Food Chem. 166, 198–205 (2015)
L. Wang, R. Yang, J. Li, L. Qu, P.D.B. Harrington, High-sensitive electrochemical sensor of Sudan I based on template-directed self-assembly of graphene-ZnSe quantum dots hybrid structure. Sens. Actuators B 215, 181–187 (2015)
X. Ma, M. Chao, Z. Wang, Electrochemical determination of Sudan I in food samples at graphene modified glassy carbon electrode based on the enhancement effect of sodium dodecyl sulphonate. Food Chem. 138, 739–744 (2013)
Y. Mao, Q. Fan, J. Li, L. Yu, L.B. Qu, A novel and green CTAB-functionalized graphene nanosheets electrochemical sensor for Sudan I determination. Sens. Actuators B 203, 759–765 (2014)
D. Yang, L. Zhu, X. Jiang, Electrochemical reaction mechanism and determination of Sudan I at a multi wall carbon nanotubes modified glassy carbon electrode. J. Electroanal. Chem. 640, 17–22 (2010)
S. Chen, D. Du, J. Huang, A. Zhang, H. Tu, A. Zhang, Rational design and application of molecularly imprinted sol–gel polymer for the electrochemically selective and sensitive determination of Sudan I. Talanta 84, 451–456 (2011)
H. Yin, Y. Zhou, X. Meng, T. Tang, S. Ai, L. Zhu, Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. Food Chem. 127, 1348–1353 (2011)
O. Chailapakul, W. Wonsawat, W. Siangproh, K. Grudpan, Y. Zhao, Z. Zhu, Analysis of sudan I, sudan II, sudan III, and sudan IV in food by HPLC with electrochemical detection: comparison of glassy carbon electrode with carbon nanotube-ionic liquid gel modified electrode. Food Chem. 109, 876–882 (2008)
Y. Wu, Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron (III)-porphyrin modified glassy carbon electrodes. Food Chem. 2010(121), 580–584 (2010)
T. Gan, K. Li, K. Wu, Multi-wall carbon nanotube-based electrochemical sensor for sensitive determination of Sudan I. Sens. Actuators B 132, 134–139 (2008)
Z.R. Mo, Y.F. Zhang, F.Q. Zhao, F. Xiao, G.P. Guo, B.Z. Zeng, Sensitive voltammetric determination of Sudan I in food samples by using gemini surfactant–ionic liquid–multiwalled carbon nanotube composite film modified glassy carbon electrodes. Food Chem. 121, 233–237 (2010)
Y. Yao, Y. Liu, Z. Yang, Highly sensitive electrochemical sensor for the food toxicant Sudan I based on a glassy carbon electrode modified with reduced graphene oxide decorated with Ag-Cu nanoparticles. Microchim. Acta 183, 3275–3283 (2016)
L. Li, X. Liu, J. Lu, Y. Liu, X. Lu, A green electrochemical sensor based on a poly (ionic liquid)–graphene nanocomposite modified electrode for Sudan I determination. Anal. Methods 7, 6595–6601 (2015)
D. Thomas, A.E. Vikraman, T. Jos, K.G. Kumar, Kinetic approach in the development of a gold nanoparticle based voltammetric sensor for Sudan I. LWT-Food Sci. Technol. 63, 1294–1300 (2015)
Y. Cao, Z. Fang, D. Yang, Y. Gao, H. Li, Voltammetric sensor for Sudan I based on glassy carbon electrode modified by SWCNT/β-Cyclodextrin conjugate. NANO 10, 1550026 (2015)
B. Liu, C. Yin, M. Wang, Electrochemical determination of Sudan I in food products using a carbon nanotube-ionic liquid composite modified electrode. Food Addit. Contam. Part A 31, 1818–1825 (2014)
L. Yu, Y. Mao, Y. Gao, L. Qu, Sensitive and simple voltammetric detection of Sudan I by using platinum nanoparticle-modified glassy carbon electrode in food samples. Food Anal. Methods 7, 1179–1185 (2014)
T. Gan, J. Sun, M. He, L. Wang, Highly sensitive electrochemical sensor for Sudan I based on graphene decorated with mesoporous TiO2. Ionics 20, 89–95 (2014)
L. Zhang, X. Zhang, X. Li, Y. Peng, H. Shen, Y. Zhang, Determination of Sudan I using electrochemically reduced graphene oxide. Anal. Lett. 46, 923–935 (2013)
S.X. Luo, Y.H. Wu, H. Gou, Electrocatalysis and sensitive determination of Sudan I at Fe3O4/graphene modified glassy carbon electrodes. Appl. Mechan. Mater. 401, 775–778 (2013)
M. Chao, X. Ma, Electrochemical determination of Sudan I at a silver nanoparticles/poly (aminosulfonic acid) modified glassy carbon electrode. Int. J. Electrochem. Sci. 7, (2012)
L. Ming, X. Xi, T. Chen, J. Liu, Electrochemical determination of trace Sudan I contamination in chili powder at carbon nanotube modified electrodes. Sensors 8, 1890–1900 (2008)
F. Arduini, L. Micheli, D. Moscone, G. Palleschi, S. Piermarini, F. Ricci, G. Volpe, Electrochemical biosensors based on nanomodified screen-printed electrodes: recent applications in clinical analysis. TrAC Trend. Anal. Chem. 79, 114–126 (2016)
M. Li, D.W. Li, G. Xiu, Y.T. Long, Applications of screen-printed electrodes in current environmental analysis. Curr. Opin. Electrochem. 3, 137–143 (2017)
J. Barton, M.B.G. García, D.H. Santos, P. Fanjul-Bolado, A. Ribotti, M. McCaul, D. Diamond, P. Magni, Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim. Acta 183, 503–517 (2016)
H. Beitollahi, S. Tajik, S. Jahani, F. Garkani-Najed, NiFe2O4 nanoparticles-modified screen printed electrode for electrochemical detection for sudan I. Anal. Bioanal. Electrochem. 10, 1317–1327 (2018)
H. Mahmoudi-Moghaddam, S. Tajik, H. Beitollahi, Highly sensitive electrochemical sensor based on La3+-doped Co3O4 nanocubes for determination of sudan I content in food samples. Food Chem. 286, 191–196 (2019)