Nanochitosan antimicrobial activity against Streptococcus mutans and Candida albicans dual-species biofilms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kim D, Seungupta A, Niepa THR, Lee BH, Weljie A, Blanco VSF, Murata RM, Stebe KJ, Lee D, Koo H. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep. 2017;7:41332.
Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, Koo H. Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilm in vivo. Infect Immun. 2014;82:1968–81.
Duangporn D, Sheryy SG, Edward CML, Chun HC. Early childhood caries among 5- to 6-year-old children in Southeast Asia. Int Dent J. 2017;67:98–106.
Feldman M, Ginsburg I, Al-Quntar A, Steinberg D. Thiazolidinedione-8 alters symbiotic relationship in C. albicans–S. mutans dual-species biofilm. Front Microbiol. 2016;7:1–12.
Liu S, Qiu W, Zhang K, Zhou X, Ren B, He J, Xu X, Cheng L, Li M. Nicotine enhances interspecies relationship between Streptococcus mutans and Candida albicans. Biomed Res Int. 2017;4:1–9.
Di Stasio D, Lauritano D, Minervini G, Paparella RS, Petruzzi M, Romano A, Candotto V, Lucchese A. Management of denture stomatitis: a narrative review. J Biol Regul Homeost Agents. 2018;32:113–6.
Sandra A, Sompop B, Luisito M, Alice C, David B, Silvana B, John P, Zvi GL, Linda G, Steven O. Clinical and histological findings of denture stomatitis as related to intraoral colonization patterns of C. albicans, salivary flow, and dry mouth. J Prosthodont. 2013;22:13–22.
Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R. Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med. 2015. https://doi.org/10.1155/2015/246012 .
Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev. 2013;65:1803–15.
Mühling M, Bradford A, Readman JW, Somerfield PJ, Handy RD. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. Mar Environ Res. 2009;68:278–83.
Ramasamy M, Lee J. Recent nanotechnology approaching for prevention and treatment of biofilm-associated infections on medical devices. Biomed Res Int. 2016;2016:1–17.
Venkatesan J, Kim SK. Chitosan composites for bone tissue engineering—an overview. Mar Drugs. 2010;8:2252–66.
Kumar MN, Muzzarelli RA, Muzzarelli C, Sashiwa H, Domb AJ. Chitosan chemistry and pharmaceutical perspectives. Chem Rev. 2004;104:6017–84.
Karagozlu MZ, Kim SK. Chapter twelve—anticancer effects of chitin and chitosan derivatives. In: Kim SK, editor. Advances in food and nutrition research, vol. 72. Waltham: Academic Press; 2014. p. 215–25. https://doi.org/10.1016/B978-0-12-800269-8.00012-9 .
Ngo DH, Kim SK. Chapter two—antioxidant effects of chitin, chitosan, and their derivatives. In: Kim SK, editor. Advances in food and nutrition research, vol. 73. Waltham: Academic Press; 2014. p. 15–31. https://doi.org/10.1016/b978-0-12-800268-1.00002-0 .
Baldrick P. The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol. 2010;56:290–9.
Costa EM, Silva S, Pina C, Tavaria FK, Pintado MM. Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens. Anaerobe. 2012;18:305–9.
Fernandes JC, Eaton P, Gomes AM, Pintado ME, Xavier Malcata F. Study of the antibacterial effects of chitosans on Bacillus cereus [and its spores] by atomic force microscopy imaging and nanoindentation. Ultramicroscopy. 2009;109:854–60.
Fernandes JC, Tavaria FK, Soares JC, Ramos OS, Monteiro MJ, Pintado ME, Malcata FX. Antimicrobial effects of chitosans and chitooligosaccharides, upon Staphylococcus aureus and Escherichia coli, in food model systems. Food Microbiol. 2008;25:922–8.
Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev. 2010;62:3–11.
Ong SY, Wu J, Moochhala SM, Tan MH, Lu J. Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties. Biomaterials. 2008;29:4323–32.
Raafat D, Sahl HG. Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol. 2009;2:186–201.
ChávezdePaz LE, Resin A, Howard KA, Sutherland DS, Wejse PL. Anti-microbial effect of chitosan nanoparticles on Streptococcus mutans biofilms. Appl Environ Microbiol. 2011;77:3892–5.
Costa E, Silva S, Tavaria F, Pintado M. Antimicrobial and antibiofilm activity of chitosan on the oral pathogen Candida albicans. Pathogens. 2014;3:908–19.
Ikono R, Mardliyati E, Agustin IT, Ulfi MMF, Andrianto D, Hasanah U, Bachtiar BM, Mardianingsih N, Bachtiar EW, Maulana NN, Rochman NT, Xianqi L, Kagami H, Inoue TN, Tojo A. Chitosan-PRP nanosphere as a growth factors slow releasing device with superior antibacterial capacity. Biomed Phys Eng Express. 2018;4:1–10. https://doi.org/10.1088/2057-1976/aac9f8 .
Cenci TP, Deng DM, Kraneveld EA, Manders EMM, Cury AADB, Cate JMT, Crielaard W. The effect of Streptococcus mutans and Candida glabrata on Candida albicans biofilms formed on different surfaces. Arch Oral Biol. 2008;53:755–64.
Sztajer H, Szafranski SP, Tomasch J, Reck M, Nimtz M, Rohde M, Dobler IW. Cross-feeding and inter kingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J. 2014;8:2256–71.
Barbosa JO, Rossoni RD, Vilela SFG, de Alvarenga JA, Velloso MS, Prata MCA, Jorge AOC, Junqueira JC. Streptococcus mutans can modulate biofilm formation and attenuate the virulence of Candida albicans. PLoS ONE. 2016;11:e0150457.
Gregoire S, Xiao J, Silva BB, Gonzalez I, Agidi PS, Klein MI, Ambatipudi KS, Rosalen PL, Bauserman R, Waugh RE, Koo H. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces. Appl Environ Microbiol. 2011;77:6357–67.
Bernard HL, Li-Chieh Y. In situ time-lapse study of extracellular polymeric substance discharge in Streptococcus mutansbiofilm. Colloids Surf B. 2017;98:105.
Aliasghari A, Khorasgani MR, Vaezifar S, Rahimi F, Younesi H, Khoroushi M. Evaluation of antibacterial efficiency of chitosan and chitosan nanoparticles on cariogenic streptococci: an in vitro study. Iran J Microbiol. 2016;8:93–100.
Ardestani ZS, Falahati M, Alborzi SS, Khozani MA, Khani FR, Bahador A. The effect of nanochitosans particles on Candida biofilm formation. Curr Med Mycol. 2016;2:28–33.
Kong M, Chen XG, Xing K, Park HJ. Antimicrobial properties of chitosan and mode of action: a state of the art review. Int J Food Microbiol. 2010;144:51–63.
Ikeda T, Tazuke S. Biologically-active polycations. 4. Synthesis and antimicrobial activity of poly[Trialkylvinylbenzylammonium chloride]. Macromol Chem Phys. 1984;185:869–76.
Guo L, McLean JS, Lux R, He X, Shi W. The well-coordinated linkage between acidogenicity and aciduricity via insoluble glucan on the surface of Streptococcus mutans. Sci Rep. 2015;5:1–11.