Na4Mn9O18/Carbon Nanotube Composite Như Một Vật Liệu Có Hiệu Suất Điện Hóa Cao Cho Pin Sodium-Ion Trong Dung Dịch

Nanoscale Research Letters - Tập 12 - Trang 1-9 - 2017
Fuxing Yin1, Zhengjun Liu1, Shuang Yang1, Zhenzhen Shan1, Yan Zhao1, Yuting Feng2, Chengwei Zhang1, Zhumabay Bakenov3
1School of Materials Science & Engineering, Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Hebei University of Technology, Tianjin, China
2Synergy Innovation Institute of GDUT, Heyuan, China
3School of Engineering, Nazarbayev University, Astana, Kazakhstan

Tóm tắt

Pin ion natri trong dung dịch (ASIB) là một trong những hệ thống lưu trữ năng lượng mới hứa hẹn nhờ vào nguồn tài nguyên natri phong phú cũng như hiệu suất và độ an toàn của dung dịch điện phân. Trong báo cáo này, chúng tôi trình bày một hệ thống ASIB với Na4Mn9O18/ống nano carbon (NMO/CNT) làm cực âm, kim loại Zn làm cực dương và ion trộn Na+/Zn2+ mới làm dung dịch điện phân. NMO/CNT với cấu trúc hình cầu vi mô được chuẩn bị bằng phương pháp phun sấy đơn giản. Pin đã được chế tạo cung cấp dung lượng cụ thể đảo ngược cao và khả năng tuần hoàn ổn định. Hơn nữa, pin hiển thị dung lượng xả đảo ngược ổn định là 53.2 mAh g−1 ngay cả ở tốc độ dòng điện cao 4 C sau 150 chu kỳ. Kết quả của chúng tôi xác nhận rằng composite NMO/CNT là một vật liệu cực âm điện cực hứa hẹn cho ASIB.

Từ khóa

#pin ion natri trong dung dịch #Na4Mn9O18 #ống nano carbon #dung dịch điện phân #hiệu suất điện hóa

Tài liệu tham khảo

Balogun MS, Qiu W, Luo Y et al (2016) A review of the development of full cell lithium-ion batteries: the impact of nanostructured anode materials. Nano Res 9:2823–2851 Balogun MS, Zeng Y, Qiu W et al (2016) Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrode for lithium ion batteries and supercapacitors. J Mater Chem A 4:9844–9849 Zhu X, Wu X, Doan TNL, Tian Y, Zhao H, Chen P (2016) Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery. J Power Sources 326:498–504 Li W, Dahn JR, Wainwright DS (1994) Rechargeable lithium batteries with aqueous electrolytes. Science 264:1115 Luo JY, Cui WJ, He P, Xia YY (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2:760 Tang W, Hou Y, Wang F, Liu L, Wu Y, Zhu K (2013) LiMn2O4 nanotube as cathode material of second-level charge capability for aqueous rechargeable batteries. Nano Lett 13:2036–2040 Wang X, Qu Q, Hou Y, Wang F, Wu Y (2013) An aqueous rechargeable lithium battery of high energy density based on coated Li metal and LiCoO2. Chem Commun 49:6179–6181 Qiao R, Dai K, Mao J et al (2015) Revealing and suppressing surface Mn(II) formation of Na0.44 MnO2 electrodes for Na-ion batteries. Nano Energy 16:186–195 Song W, Ji X, Zhu Y et al (2014) Aqueous sodium-ion battery using a Na3V2(PO4)3 electrode. Chem Aust 1:871–876 Jung YH, Lim CH, Kim JH, Kim DK (2014) Na2FeP2O7 as a positive electrode material for rechargeable aqueous sodium-ion batteries. RSC Adv 4:9799–9802 XY W, Sun MY, Shen YF et al (2014) Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 7:407 Chen L, Gu Q, Zhou X, Lee S, Xia Y, Liu Z (2013) New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes. Sci Rep 3:1946 Saint JA, Doeff MM, Wilcox J (2008) Electrode materials with the Na0.44MnO2 structure: effect of titanium substitution on physical and electrochemical properties. Chem Mater 20:3404–3411 Hong SY, Kim Y, Park Y, Choi A, Choi NS, Lee KT (2013) ChemInform abstract: charge carriers in rechargeable batteries: Na ions vs. Li ions. ChemInform 6:2067–2081 Li S, Dong Y, Xu L, Xu X, He L, Mai L (2014) Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv Mater 26:3545–3553 Cao Y, Xiao L, Wang W et al (2011) ChemInform abstract: reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160 Zhang Y, Wei Y, Li H, Zhao Y, Yin F, Wang X (2016) Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries. Mater Lett 184:235–238 Wang G, Lu C, Zhang X et al (2017) Toward ultrafast lithium ion capacitors: a novel atomic layer deposition seeded preparation of Li4Ti5O12/graphene anode. Nano Energy 36:46–57 Wang H, Chen Z, Liu H, Guo Z (2014) A facile synthesis approach to micro-macroporous carbon from cotton and its application in the lithium-sulfur battery. RSC Adv 4:65074–65080 Yoshio M, Wang H, Fukuda K (2003) Spherical carbon-coated natural graphite as a lithium-ion battery-anode material. Angew Chem 42:4203–4206 Li H, Wei Y, Zhang Y et al (2016) In situ sol-gel synthesis of ultrafine ZnO nanocrystals anchored on graphene as anode material for lithium-ion batteries. Ceram Int 42:12371–12377 Zhong Y, Xia X, Zhan J et al (2016) A CNT cocoon on sodium manganate nanotubes forming a core/branch cathode coupled with a helical carbon nanofibre anode for enhanced sodium ion batteries. J Mater Chem A 4:11207–11213 Zhao L, Ni J, Wang H, Gao L (2013) Na0.44MnO2-CNT electrodes for non-aqueous sodium batteries. RSC Adv 3:6650–6655 SH J, Yun CK (2008) LiFePO4/C cathode powders prepared by spray pyrolysis from the colloidal spray solution containing nano-sized carbon black. Mater Chem Phys 107:328–333 Yu F, Zhang J, Yang Y, Song G (2010) Preparation and electrochemical performance of Li3V2(PO4)3/C cathode material by spray-drying and carbothermal method. J Solid State Electr 14:883–888 Liu W, Wang Q, Cao C et al (2015) Spray drying of spherical Li4Ti5O12/C powders using polyvinyl pyrrolidone as binder and carbon source. J Alloys Compd 621:162–169 Bai S, Song J, Wen Y et al (2016) Effects of zinc and manganese ions in aqueous electrolytes on structure and electrochemical performance of Na0.44MnO2 cathode material. RSC Adv 6:40793–40798 Yesibolati N, Umirov N, Koishybay A et al (2015) High performance Zn/LiFePO4 aqueous rechargeable battery for large scale applications. Electrochim Acta 152:505–511 Lee JH, Black R, Popov G et al (2012) The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium-oxygen batteries. Energy Environ Sci 5:9558–9565 Jin B, Jin EM, Park KH, HB G (2008) Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem Commun 10:1537–1540 Le AV, Wang M, Shi Y, Noelle D, Qiao Y, Lu W (2015) Effects of additional multiwall carbon nanotubes on impact behaviors of LiNi0.5Mn0.3Co0.2O2 battery electrodes. J Appl Phys 72:968 Ha H, Jeong SH (2016) Facile route to multi-walled carbon nanotubes under ambient conditions. Korean J Cheml Eng 33:401–404 Wang H, Cheng P, Zheng J, Feng P, Hao Y (2013) Design, synthesis and the electrochemical performance of MnO2/C@CNT as supercapacitor material. Mater Res Bull 48:3389–3393 Fu B, Zhou X, Wang Y (2016) High-rate performance electrospun Na0.44MnO2 nanofibers as cathode material for sodium-ion batteries. J Power Sources 310:102–108 Wu X, Li Y, Xiang Y et al (2016) The electrochemical performance of aqueous rechargeable battery of Zn/Na0.44MnO2 based on hybrid electrolyte. J Power Sources 336:35–39 Yan J, Wang J, Liu H, Bakenov Z, Gosselink D, Chen P (2012) Rechargeable hybrid aqueous batteries. J Power Sources 216:222–226 Wang LP, Wang PF, Wang TS et al (2017) Prussian blue nanocubes as cathode materials for aqueous Na-Zn hybrid batteries. J Power Sources 355:18–22 Meher SK, Rao GR (2011) Ultralayered Co3O4 for high-performance supercapacitor applications. J Phys Chem C 115:15646–15654 Zhang B, Liu Y, Wu X, Yang Y, Chang Z, Wen Z et al (2014) An aqueous rechargeable battery based on zinc anode and Na0.95MnO2. Chem Commun 50:1209–1211 Hou Z, Li X, Liang J, Zhu Y, Qian Y (2014) An aqueous rechargeable sodium ion battery based on a NaMnO2-NaTi2(PO4)3 hybrid system for stationary energy storage. J Mater Chem A 3:1400–1404 Dong JK, Ponraj R, Kannan AG et al (2013) Diffusion behavior of sodium ions in Na0.44MnO2 in aqueous and non-aqueous electrolytes. J Power Sources 244:758–763 Zhang BH, Liu Y, Chang Z et al (2014) Nanowire Na0.35MnO2 from a hydrothermal method as a cathode material for aqueous asymmetric supercapacitors. J Power Sources 253:98–103