NURBS- and T-spline-based isogeometric cohesive zone modeling of interface debonding

Computational Mechanics - Tập 54 Số 2 - Trang 369-388 - 2014
Rossana Dimitri1, Laura De Lorenzis2, Peter Wriggers3, Giorgio Zavarise4
1Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy#TAB#
2Institut für Angewandte Mechanik, Technische Universität Braunschweig, Braunschweig, Germany
3Institut für Kontinuumsmechanik, Leibniz Universität Hannover, Hannover, Germany
4Dipartimento di Ingegneria dell’Innovazione, Università del Salento, Lecce, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alfano G, Crisfield MA (2001) Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736

Allix O, Ladevèze P (1992) Interlaminar interface modelling for the prediction of delamination. Compos Struct 22:235–242

Allix O, Ladevèze P, Corigliano A (1995) Damage analysis of interlaminar fracture specimens. Compos Struct 31(1):61–74

Allix O, Corigliano A (1999) Geometrical and interfacial non-linearities in the analysis of delamination in composites. Int J Solids Struct 36(15):2189–2216

ASTM Standard D3433–99 (2012) Standard test method for fracture strength in cleavage of adhesives in bonded metal joints. doi: 10.1520/D3433-99R12 . www.astm.org

Autodesk, Inc. (2011) http://www.tsplines.com/rhino/

Barenblatt GI (1959) The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks. J Appl Math Mech 23:622–636

Bazilevs Y, Calo VM, Cottrell JA, Evans JA, Hughes TJR, Lipton S, Scott MA, Sederberg TW (2010) Isogeometric analysis using T-splines. Comput Methods Appl Mech Eng 199(5–8):229–263

Bolzon G, Corigliano A (1997) A discrete formulation for elastic solids with damaging interfaces. Comput Methods Appl Mech Eng 140:329–359

Borden MJ, Scott MA, Evans JA, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of NURBS. Int J Numer Methods Eng 87:15–47

Corigliano A (1993) Formulation, identication and use of interface models in the numerical analysis of composite delamination. Int J Solids Struct 30(20):2779–2811

Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward Integration of CAD and FEA. Wiley, New York

Crisfield MA, Alfano G (2002) Adaptive hierarchical enrichment for delamination fracture using a decohesive zone model. Int J Numer Methods Eng 54:1369–1390

De Lorenzis L, Zavarise G (2009) Cohesive zone modeling of interfacial stresses in plated beams. Int J Solids Struct 46(24):4181–4191

De Lorenzis L, Zavarise G (2009) Interfacial stress analysis and prediction of debonding for a thin plate bonded to a curved substrate. Int J Non-Linear Mech 44(4):358–370

De Lorenzis L, Temizer İ, Wriggers P, Zavarise G (2011) A large deformation frictional contact formulation using NURBS-based isogeometric analysis. Int J Numer Methods Eng 87(13):1278–1300

De Lorenzis L, Wriggers P, Zavarise G (2012) A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method. Comput Mech 49(1):1–20

Deng J, Chen F, Li X, Hu C, Tong W, Yang Z, Feng Y (2008) Polynomial splines over hierarchical T-meshes. Graph Models 70:76–86

Dimitri R, De Lorenzis L, Scott MA, Wriggers P, Taylor RL, Zavarise G (2014) Isogeometric large deformation frictionless contact using T-splines. Comput Methods Appl Mech Eng 269:394–414

Dokken T, Lyche T, Pettersen KF (2013) Polynomial splines over locally refined box-partitions. Comput Aided Geom Des 30(3):331–356

Dörfel MR, Jüttler B, Simeon B (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199:264–275

Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8:100–104

Fischer KA, Wriggers P (2005) Frictionless 2D contact formulations for finite deformations based on the mortar method. Comput Mech 36:226–244

Guimatsia I, Ankersen JK, Davies GAO, Iannucci L (2009) Decohesion finite element with enriched basis functions for delamination. Compos Sci Technol 69(15–16):2616–2624

Hermes FH (2010) Process zone and cohesive element size in numerical simulations of delamination in bi-layers. MT 10.21, Eindhoven, September 24th, 2010

Hughes TJR (1987) The finite element method. Linear static and dynamic finite element analysis. Prentice-hall, Englewood Cliffs

Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195

Kiendl J, Bletzinger KU, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff-Love elements. Comput Methods Appl Mech Eng 198(49–52):3902–3914

Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin

Lu J (2011) Isogeometric contact analysis: geometric basis and formulation for frictionless contact. Comput Methods Appl Mech Eng 200:726–740

Matzen ME, Cichosz T, Bischoff M (2013) A point to segment contact formulation for isogeometric, NURBS based finite elements. Comput Methods Appl Mech Eng 255:27–39

Needleman A (1987) A continuum model for void nucleation by inclusion debonding. J Appl Mech 54:525–531

Needleman A (1990) An analysis of tensile decohesion along an interface. J Mech Phys Solids 38(3):289–324

Nguyen-Thanh N, Nguyen-Xuan H, Bordas SP, Rabczuk T (2011) Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids. Comput Methods Appl Mech Eng 200(21–22):1892–1908

Nguyen VP, Nguyen-Xuan H (2013) High-order B-splines based finite elements for delamination analysis of laminated composites. Compos Struct 102:261–275

Papadopoulos P, Jones RE, Solberg JM (1995) A novel finite element formulation for frictionless contact problems. Int J Numer Methods Eng 38:2603–2617

Point N, Sacco E (1996) A delamination model for laminated composites. Int J Solids Struct 33(4):483–509

Raju IS (1987) Calculation of strain-energy release rates with higher order and singular finite elements. Eng Fract Mech 28:251–274

Sauer R (2011) Enriched contact finite elements for stable peeling computations. Int J Numer Methods Eng 87:593–616

Sauer RA, De Lorenzis L (2013) A computational contact formulation based on surface potentials. Comput Methods Appl Mech Eng 253:369–395

Samini M, van Dommelen JAW, Geers MGD (2009) An enriched cohesive zone model for delamination in brittle interfaces. Numer Methods Eng 80(5):609–630

Samini M, van Dommelen JAW, Geers MGD (2011) A self-adaptive finite element approach for simulation of mixed-mode delamination using cohesive zone models. Eng Fract Mech 78(10):2202–2219

Schellekens JCJ, de Borst R (1993) A non-linear finite element approach for the analysis of mode-I free edge delamination in composites. Int J Solids Struct 30:1239–1253

Schillinger D, Ruess M, Zander N, Bazilevs Y, Düster A, Rank E (2012) Small and large deformation analysis with the p- and B-spline versions of the finite cell method. Comput Mech 50:445–478

Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Numer Methods Eng 88(2):126–156

Scott MA, Li X, Sederberg TW, Hughes TJR (2012) Local refinement of analysis-suitable T-splines. Comput Methods Appl Mech Eng 213–216:206–222

Sederberg TW, Zheng J, Bakenov A, Nasri A (2003) T-splines and T-NURCCSs. ACM Trans Graph 22(3):477–484

Sederberg TW, Zheng J, Song X (2003) Knot intervals and multi-degree splines. Comput Aided Geom Des 20:455–468

Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T (2004) T-spline simplification and local refinement. ACM Trans Graph 23(3):276–283

Sederberg TW, Finnigan GT, Lin X, Ipson H (2008) Watertight trimmed NURBS, ACM Transactions on Graphics (TOG)—Proceedings of ACM SIGGRAPH, 27(3), Article No. 79, 2008

Taylor RL (2013) FEAP—finite element analysis program. University of California, Berkeley. http://www.ce.berkeley.edu/projects/feap/

Temizer İ, Wriggers P, Hughes TJR (2011) Contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 200(9–12):1100–1112

Temizer İ, Wriggers P, Hughes TJR (2012) Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS. Comput Methods Appl Mech Eng 209–212:115–128

Tvergaard V, Hutchinson JW (1992) The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J Mech Phys Solids 40(6):1377–1397

Tvergaard V, Hutchinson JW (1993) The influence of plasticity on mixed mode interface toughness. J Mech Phys Solids 41(6):1119–1135

Verhoosel CV, Scott MA, de Borst R, Hughes TJR (2011) An isogeometric approach to cohesive zone modeling. Int J Numer Meth Eng 87(1–5):336–360

Vuong AV, Giannelli C, Jüttler B, Simeon B (2011) A hierarchical approach to adaptive local refinement in isogeometric analysis. Comput Methods Appl Mech Eng 49–52:3554–3567

Wang W, Zhang Y, Scott MA, Hughes TJR (2011) Converting an unstructured quadrilateral mesh to a standard T-spline surface. Comput Mech 48(4):477–498

Wei Y, Hutchinson JW (1998) Interface strength, work of adhesion and plasticity in the peel test. Int J Fract 93:315–333

Wriggers P (2006) Computational contact mechanics, 2nd edn. Spinger, Berlin

Zhang Y, Wang W, Hughes TJR (2012) Solid T-spline construction from boundary representations for genus-zero geometry. Comput Methods Appl Mech Eng 249–252:185–197