NU-IN: Nucleotide evolution and input module for the EvolSimulator genome simulation platform
Tóm tắt
There is increasing demand to test hypotheses that contrast the evolution of genes and gene families among genomes, using simulations that work across these levels of organization. The EvolSimulator program was developed recently to provide a highly flexible platform for forward simulations of amino acid evolution in multiple related lineages of haploid genomes, permitting copy number variation and lateral gene transfer. Synonymous nucleotide evolution is not currently supported, however, and would be highly advantageous for comparisons to full genome, transcriptome, and single nucleotide polymorphism (SNP) datasets. In addition, EvolSimulator creates new genomes for each simulation, and does not allow the input of user-specified sequences and gene family information, limiting the incorporation of further biological realism and/or user manipulations of the data. We present modified C++ source code for the EvolSimulator platform, which we provide as the extension module NU-IN. With NU-IN, synonymous and non-synonymous nucleotide evolution is fully implemented, and the user has the ability to use real or previously-simulated sequence data to initiate a simulation of one or more lineages. Gene family membership can be optionally specified, as well as gene retention probabilities that model biased gene retention. We provide PERL scripts to assist the user in deriving this information from previous simulations. We demonstrate the features of NU-IN by simulating genome duplication (polyploidy) in the presence of ongoing copy number variation in an evolving lineage. This example is initiated with real genomic data, and produces output that we analyse directly with existing bioinformatic pipelines. The NU-IN extension module is a publicly available open source software (GNU GPLv3 license) extension to EvolSimulator. With the NU-IN module, users are now able to simulate both drift and selection at the nucleotide, amino acid, copy number, and gene family levels across sets of related genomes, for user-specified starting sequences and associated parameters. These features can be used to generate simulated genomic datasets under an extremely broad array of conditions, and with a high degree of biological realism.
Tài liệu tham khảo
Lynch M: The origins of genome architecture. 2007, Sunderland: Sinauer Associates
Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D: Autoimmune response as a mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLOS Biol. 2007, 5: 1962-1972. 10.1371/journal.pbio.0050236.
Chapman M, Leebens-Mack J, Burke J: Positive selection and expression divergence following gene duplication in the sunflower CYCLOIDEA gene family. Mol Biol Evol. 2008, 25: 1260-1273. 10.1093/molbev/msn001.
Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson K, MacArthur DG, MacDonald JR, Onyiah I, Pang AWC, Robson S, Stirrups K, Valsesia A, Walter K, Wei J, The Wellcome Trust Case Control Consortium, Tyler-Smith C, Carter NP, Lee C, Scherer SW, Hurles ME: Origins and functional impact of copy number variation in the human genome. Nature. 2010, 464: 704-712. 10.1038/nature08516.
Hahn MW, Demuth JP, Han S-G: Accelerated rate of gene gain and loss in primates. Genetics. 2007, 177: 1949-10.1534/genetics.107.080077.
Beiko RG, Charlebois RL: A simulation test bed for hypotheses of genome evolution. Bioinformatics. 2007, 23: 825-831. 10.1093/bioinformatics/btm024.
Beiko RG, Doolittle WF, Charlebois RL: The impact of reticulate evolution on genome phylogeny. Sys Biol. 2008, 57: 844-856. 10.1080/10635150802559265.
Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000, 15: 496-503. 10.1016/S0169-5347(00)01994-7.
PlantTribes. [http://fgp.bio.psu.edu/tribedb/index.pl]
Freeling M: Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Ann Rev Plant Biol. 2009, 60: 433-453. 10.1146/annurev.arplant.043008.092122.
Selaginella moellendorffii v1.0. [http://genome.jgi-psf.org/Selmo1]
Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore RW, Knapp SJ, Rieseberg LH: Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Mol Biol Evol. 2008, 25: 2445-2455. 10.1093/molbev/msn187.
Barker MS, Vogel H, Schranz ME: Paleopolyploidy in the Brassicales: analyses of the Cleome transcriptome elucidate the history of genome duplications in Arabidopsis and other Brassicales. Genome Biol Evol. 2009, 1: 391-399. 10.1093/gbe/evp040.
EvoPipes.net. [http://www.evopipes.net]
Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004, 16: 1667-1678. 10.1105/tpc.021345.