NNLO QCD corrections to γ + η c (η b ) exclusive production in electron-positron collision
Tóm tắt
Từ khóa
Tài liệu tham khảo
G.T. Bodwin, E. Braaten and G.P. Lepage, Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Phys. Rev. D 51 (1995) 1125 [Erratum ibid. D 55 (1997) 5853] [ hep-ph/9407339 ] [ INSPIRE ].
N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [ arXiv:1010.5827 ] [ INSPIRE ].
E. Braaten and J. Lee, Exclusive double charmonium production from e + e − annihilation into a virtual photon, Phys. Rev. D 67 (2003) 054007 [Erratum ibid. D 72 (2005) 099901] [ hep-ph/0211085 ] [ INSPIRE ].
K.-Y. Liu, Z.-G. He and K.-T. Chao, Problems of double charm production in e + e − annihilation at s = 10.6 $$ \sqrt{s}=10.6 $$ GeV, Phys. Lett. B 557 (2003) 45 [ hep-ph/0211181 ] [ INSPIRE ].
K. Hagiwara, E. Kou and C.-F. Qiao, Exclusive J/ψ productions at e + e − colliders, Phys. Lett. B 570 (2003) 39 [ hep-ph/0305102 ] [ INSPIRE ].
Belle collaboration, K. Abe et al., Observation of double cc production in e + e − annihilation at s ≃ 10.6 $$ \sqrt{s}\simeq 10.6 $$ GeV, Phys. Rev. Lett. 89 (2002) 142001 [ hep-ex/0205104 ] [ INSPIRE ].
BaBar collaboration, B. Aubert et al., Measurement of double charmonium production in e + e − annihilations at s = 10.6 $$ \sqrt{s}=10.6 $$ GeV, Phys. Rev. D 72 (2005) 031101 [ hep-ex/0506062 ] [ INSPIRE ].
Y.-J. Zhang, Y.-J. Gao and K.-T. Chao, Next-to-leading order QCD correction to e + e − → J/ψ + η c at s = 10.6 $$ \sqrt{s}=10.6 $$ GeV, Phys. Rev. Lett. 96 (2006) 092001 [ hep-ph/0506076 ] [ INSPIRE ].
Y.-J. Zhang and K.-T. Chao, Double charm production e + e − → J/ψ + cbarc at B factories with next-to-leading order QCD correction, Phys. Rev. Lett. 98 (2007) 092003 [ hep-ph/0611086 ] [ INSPIRE ].
M.A. Shifman and M.I. Vysotsky, Form-factors of heavy mesons in QCD, Nucl. Phys. B 186 (1981) 475 [ INSPIRE ].
W.-L. Sang and Y.-Q. Chen, Higher order corrections to the cross section of e + e − → quarkonium + γ, Phys. Rev. D 81 (2010) 034028 [ arXiv:0910.4071 ] [ INSPIRE ].
D. Li, Z.-G. He and K.-T. Chao, Search for C = + charmonium and bottomonium states in e + e − → γ + X at B factories, Phys. Rev. D 80 (2009) 114014 [ arXiv:0910.4155 ] [ INSPIRE ].
M. Beneke, A. Signer and V.A. Smirnov, Two loop correction to the leptonic decay of quarkonium, Phys. Rev. Lett. 80 (1998) 2535 [ hep-ph/9712302 ] [ INSPIRE ].
A. Czarnecki and K. Melnikov, Two loop QCD corrections to the heavy quark pair production cross-section in e + e − annihilation near the threshold, Phys. Rev. Lett. 80 (1998) 2531 [ hep-ph/9712222 ] [ INSPIRE ].
M. Beneke et al., Leptonic decay of the Y(1S) meson at third order in QCD, Phys. Rev. Lett. 112 (2014) 151801 [ arXiv:1401.3005 ] [ INSPIRE ].
A. Czarnecki and K. Melnikov, Charmonium decays: J/ψ → e + e − and η c → γγ, Phys. Lett. B 519 (2001) 212 [ hep-ph/0109054 ] [ INSPIRE ].
A.I. Onishchenko and O.L. Veretin, Two loop QCD corrections to B c meson leptonic constant, Eur. Phys. J. C 50 (2007) 801 [ hep-ph/0302132 ] [ INSPIRE ].
L.-B. Chen and C.-F. Qiao, Two-loop QCD corrections to B c meson leptonic decays, Phys. Lett. B 748 (2015) 443 [ arXiv:1503.05122 ] [ INSPIRE ].
F. Feng, Y. Jia and W.-L. Sang, Can nonrelativistic QCD explain the γγ ∗ → η c transition form factor data?, Phys. Rev. Lett. 115 (2015) 222001 [ arXiv:1505.02665 ] [ INSPIRE ].
F. Feng, Y. Jia and W.-L. Sang, Next-to-next-to-leading-order QCD corrections to the hadronic width of pseudoscalar quarkonium, Phys. Rev. Lett. 119 (2017) 252001 [ arXiv:1707.05758 ] [ INSPIRE ].
T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [ hep-ph/0012260 ] [ INSPIRE ].
A.V. Kotikov, Differential equations method: new technique for massive Feynman diagrams calculation, Phys. Lett. B 254 (1991) 158 [ INSPIRE ].
A.V. Kotikov, Differential equation method: the calculation of N point Feynman diagrams, Phys. Lett. B 267 (1991) 123 [Erratum ibid. B 295 (1992) 409] [ INSPIRE ].
J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett. 110 (2013) 251601 [ arXiv:1304.1806 ] [ INSPIRE ].
L.-B. Chen, Y. Liang and C.-F. Qiao, Two-loop integrals for CP-even heavy quarkonium production and decays, JHEP 06 (2017) 025 [ arXiv:1703.03929 ] [ INSPIRE ].
L. Adams, E. Chaubey and S. Weinzierl, Simplifying differential equations for multiscale Feynman integrals beyond multiple polylogarithms, Phys. Rev. Lett. 118 (2017) 141602 [ arXiv:1702.04279 ] [ INSPIRE ].
E. Remiddi and L. Tancredi, Differential equations and dispersion relations for Feynman amplitudes. The two-loop massive sunrise and the kite integral, Nucl. Phys. B 907 (2016) 400 [ arXiv:1602.01481 ] [ INSPIRE ].
A. von Manteuffel and L. Tancredi, A non-planar two-loop three-point function beyond multiple polylogarithms, JHEP 06 (2017) 127 [ arXiv:1701.05905 ] [ INSPIRE ].
R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello and V.A. Smirnov, Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence, JHEP 12 (2016) 096 [ arXiv:1609.06685 ] [ INSPIRE ].
L. Adams, C. Bogner, A. Schweitzer and S. Weinzierl, The kite integral to all orders in terms of elliptic polylogarithms, J. Math. Phys. 57 (2016) 122302 [ arXiv:1607.01571 ] [ INSPIRE ].
L.-B. Chen, J. Jiang and C.-F. Qiao, Two-loop integrals for CP-even heavy quarkonium production and decays: elliptic sectors, arXiv:1712.03516 [ INSPIRE ].
J. Vollinga and S. Weinzierl, Numerical evaluation of multiple polylogarithms, Comput. Phys. Commun. 167 (2005) 177 [ hep-ph/0410259 ] [ INSPIRE ].
C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic computation within the C++ programming language, J. Symb. Comput. 33 (2000) 1 [ cs/0004015 ] [ INSPIRE ].
H. Frellesvig, D. Tommasini and C. Wever, On the reduction of generalized polylogarithms to Li n and Li 2,2 and on the evaluation thereof, JHEP 03 (2016) 189 [ arXiv:1601.02649 ] [ INSPIRE ].
A.V. Smirnov, FIESTA4: optimized Feynman integral calculations with GPU support, Comput. Phys. Commun. 204 (2016) 189 [ arXiv:1511.03614 ] [ INSPIRE ].
S. Borowka, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk and T. Zirke, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop, Comput. Phys. Commun. 196 (2015) 470 [ arXiv:1502.06595 ] [ INSPIRE ].
D.J. Broadhurst, N. Gray and K. Schilcher, Gauge invariant on-shell Z 2 in QED, QCD and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111 [ INSPIRE ].
K. Melnikov and T. van Ritbergen, The three loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [ hep-ph/0005131 ] [ INSPIRE ].
Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [ INSPIRE ].
K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43 [ hep-ph/0004189 ] [ INSPIRE ].
G.T. Bodwin, H.S. Chung, D. Kang, J. Lee and C. Yu, Improved determination of color-singlet nonrelativistic QCD matrix elements for S-wave charmonium, Phys. Rev. D 77 (2008) 094017 [ arXiv:0710.0994 ] [ INSPIRE ].
H.S. Chung, J. Lee and C. Yu, NRQCD matrix elements for S-wave bottomonia and Γ[η b (nS) → γγ] with relativistic corrections, Phys. Lett. B 697 (2011) 48 [ arXiv:1011.1554 ] [ INSPIRE ].
BESIII collaboration, M. Ablikim et al., Evidence for e + e − → γη c (1S) at center-of-mass energies between 4.01 and 4.60 GeV, Phys. Rev. D 96 (2017) 051101 [ arXiv:1705.06853 ] [ INSPIRE ].