NF-κB, a culprit of both inflamm-ageing and declining immunity?

Immunity & Ageing - Tập 19 - Trang 1-8 - 2022
Preeyaporn Songkiatisak1, Shah Md Toufiqur Rahman1, Mohammad Aqdas1, Myong-Hee Sung1
1Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, USA

Tóm tắt

NF-κB is generally recognized as an important regulator of ageing, through its roles in cellular senescence and inflammatory pathways. Activated in virtually all cell-cell communication networks of the immune system, NF-κB is thought to affect age-related defects of both innate and adaptive immune cells, relevant to inflamm-ageing and declining adaptive immunity, respectively. Moreover, the family of NF-κB proteins that exist as heterodimers and homodimers exert their function beyond the immune system. Given their involvement in diverse areas such as DNA damage to metabolism, NF-κB has the potential to serve as linkages between known hallmarks of ageing. However, the complexity of NF-κB dimer composition, dynamic signaling, and tissue-specific actions has received relatively little attention in ageing research. Here, we discuss some areas where further research may bear fruit in our understanding the impact of NF-κB in healthy ageing and longevity.

Tài liệu tham khảo

López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell. 2013;153(6):1194–217. Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes & diseases. 2021;8(3):287–97. Hoffmann A, Baltimore D. Circuitry of nuclear factor κB signaling. Immunological reviews. 2006;210(1):171–86. Ghosh S, HAYDEN M, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62. Siggers T, Chang AB, Teixeira A, Wong D, Williams KJ, Ahmed B, Ragoussis J, Udalova IA, Smale ST, Bulyk ML. Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-κB family DNA binding. Nature immunology. 2012;13(1):95–102. Ramsey KM, Chen W, Marion JD, Bergqvist S, Komives EA. Exclusivity and Compensation in NFκB Dimer Distributions and IκB Inhibition. Biochemistry. 2019;58(21):2555–63. Jurk D, Wilson C, Passos JF, Oakley F, Correia-Melo C, Greaves L, Saretzki G, Fox C, Lawless C, Anderson R. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature communications. 2014;5(1):1–14. Bernal GM, Wahlstrom JS, Crawley CD, Cahill KE, Pytel P, Liang H, Kang S, Weichselbaum RR, Yamini B. Loss of Nfkb1 leads to early onset aging. Aging (Albany NY). 2014;6(11):931. Baiguera C, Alghisi M, Pinna A, Bellucci A, De Luca MA, Frau L, Morelli M, Ingrassia R, Benarese M, Porrini V. Late-onset Parkinsonism in NFκB/c-Rel-deficient mice. Brain. 2012;135(9):2750–65. Parrella E, Bellucci A, Porrini V, Benarese M, Lanzillotta A, Faustini G, Longhena F, Abate G, Uberti D, Pizzi M. NF-κB/c-Rel deficiency causes Parkinson’s disease-like prodromal symptoms and progressive pathology in mice. Translational neurodegeneration. 2019;8(1):1–20. Lian H, Yang L, Cole A, Sun L, Chiang AC-A, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron. 2015;85(1):101–15. Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, McCord RA, Ongaigui KC, Boxer LD, Chang HY. SIRT6 links histone H3 lysine 9 deacetylation to NF-κB-dependent gene expression and organismal life span. Cell. 2009;136(1):62–74. Proto JD, Lu A, Dorronsoro A, Scibetta A, Robbins PD, Niedernhofer LJ, Huard J. Inhibition of NF-κB improves the stress resistance and myogenic differentiation of MDSPCs isolated from naturally aged mice. Plos one. 2017;12(6):e0179270. Vistain L, Van Phan H, Jordi C, Chen M, Reddy ST, Tay S: Quantification of proteins, protein complexes and mRNA in single cells by proximity-sequencing. bioRxiv 2020. Martin EW, Chakraborty S, Presman DM, Tomassoni Ardori F, Oh K-S, Kaileh M, Tessarollo L, Sung M-H. Assaying Homodimers of NF-κB in Live Single Cells. Frontiers in immunology. 2019;10:2609. Cheng QJ, Ohta S, Sheu KM, Spreafico R, Adelaja A, Taylor B, Hoffmann A. NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages. Science. 2021;372(6548):1349–53. De Lorenzi R, Gareus R, Fengler S, Pasparakis M. GFP-p65 knock‐in mice as a tool to study NF‐κB dynamics in vivo. Genesis. 2009;47(5):323–9. Christian F, Smith E, Carmody R. The regulation of NF-kappaB subunits by phosphorylation. Cells. 2016;5(1):12. https://doi.org/10.3390/cells5010012. Jiang X, Takahashi N, Matsui N, Tetsuka T, Okamoto T. The NF-κB activation in lymphotoxin β receptor signaling depends on the phosphorylation of p65 at serine 536. Journal of Biological Chemistry. 2003;278(2):919–26. Zhang G, Li J, Purkayastha S, Tang Y, Zhang H, Yin Y, Li B, Liu G, Cai D. Hypothalamic programming of systemic ageing involving IKK-beta, NF-kappaB and GnRH. Nature. 2013;497(7448):211–6. Maurya MR, Gupta S. Li JY-S, Ajami NE, Chen ZB, Shyy JYJ, Chien S, Subramaniam S: Longitudinal shear stress response in human endothelial cells to atheroprone and atheroprotective conditions. Proceed Natl Acad Sci. 2021;118(4):e2023236118. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017;2(1):17023. Ward AO, Caputo M, Angelini GD, George SJ, Zakkar M. Activation and inflammation of the venous endothelium in vein graft disease. Atherosclerosis. 2017;265:266–74. Chang SH, Mori D, Kobayashi H, Mori Y, Nakamoto H, Okada K, Taniguchi Y, Sugita S, Yano F, Chung U-, et al. Excessive mechanical loading promotes osteoarthritis through the gremlin-1–NF-κB pathway. Nat Commun. 2019;10(1):1442. Jeremy S, Tilstra CLCLJNPDR. NF-κB in aging and disease. Agi Dis. 2011;2(6):449–65. Thoma A, Lightfoot AP: NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. In: Muscle Atrophy. Edited by Xiao J. Singapore: Springer Singapore; 2018: 267–279. Novack DV. Role of NF-κB in the skeleton. Cell Research. 2011;21(1):169–82. Mercurio F, Manning AM. NF-κB as a primary regulator of the stress response. Oncogene. 1999;18(45):6163–71. Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front Cell Develop Biol. 2021;9:628157. Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS Crosstalk in Inflammation. Trends Cell Biol. 2016;26(4):249–61. Lingappan K. NF-κB in oxidative stress. Current Opinion in Toxicology. 2018;7:81–6. Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961;25:585–621. Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, et al. Cellular Senescence: Defining a Path Forward. Cell. 2019;179(4):813–27. Kuilman T, Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer. 2009;9(2):81–94. Egashira M, Hirota Y, Shimizu-Hirota R, Saito-Fujita T, Haraguchi H, Matsumoto L, Matsuo M, Hiraoka T, Tanaka T, Akaeda S, et al. F4/80 + Macrophages Contribute to Clearance of Senescent Cells in the Mouse Postpartum Uterus. Endocrinology. 2017;158(7):2344–53. Mevorach D, Trahtemberg U, Krispin A, Attalah M, Zazoun J, Tabib A, Grau A, Verbovetski-Reiner I. What do we mean when we write “senescence,“ “apoptosis,“ “necrosis,“ or “clearance of dying cells". Ann N Y Acad Sci. 2010;1209:1–9. Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin I, et al. Aging of mice is associated with p16(Ink4a)- and beta-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY). 2016;8(7):1294–315. Acosta JC, Banito A, Wuestefeld T, Georgilis A, Janich P, Morton JP, Athineos D, Kang TW, Lasitschka F, Andrulis M, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978–90. Grosse L, Wagner N, Emelyanov A, Molina C, Lacas-Gervais S, Wagner KD, Bulavin DV. Defined p16(High) Senescent Cell Types Are Indispensable for Mouse Healthspan. Cell Metab. 2020;32(1):87-99 e86. Zealley B. Commentary on Some Recent Theses Relevant to Combating Aging: December 2021. Rejuvenation Res. 2021;24(6):464–9. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V, et al. Non-cell-autonomous tumor suppression by p53. Cell. 2013;153(2):449–60. Mazzoni M, Mauro G, Erreni M, Romeo P, Minna E, Vizioli MG, Belgiovine C, Rizzetti MG, Pagliardini S, Avigni R, et al. Senescent thyrocytes and thyroid tumor cells induce M2-like macrophage polarization of human monocytes via a PGE2-dependent mechanism. J Exp Clin Cancer Res. 2019;38(1):208. Trias E, Beilby PR, Kovacs M, Ibarburu S, Varela V, Barreto-Nunez R, Bradford SC, Beckman JS, Barbeito L. Emergence of Microglia Bearing Senescence Markers During Paralysis Progression in a Rat Model of Inherited ALS. Front Aging Neurosci. 2019;11:42. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell. 2008;14(2):156–65. Mahbub S, Deburghgraeve CR, Kovacs EJ. Advanced age impairs macrophage polarization. J Interferon Cytokine Res. 2012;32(1):18–26. Hinojosa CA, Akula Suresh Babu R, Rahman MM, Fernandes G, Boyd AR, Orihuela CJ. Elevated A20 contributes to age-dependent macrophage dysfunction in the lungs. Exp Gerontol. 2014;54:58–66. Boyd AR, Shivshankar P, Jiang S, Berton MT, Orihuela CJ. Age-related defects in TLR2 signaling diminish the cytokine response by alveolar macrophages during murine pneumococcal pneumonia. Exp Gerontol. 2012;47(7):507–18. Hefendehl JK, Neher JJ, Suhs RB, Kohsaka S, Skodras A, Jucker M. Homeostatic and injury-induced microglia behavior in the aging brain. Aging Cell. 2014;13(1):60–9. Rodier F, Munoz DP, Teachenor R, Chu V, Le O, Bhaumik D, Coppe JP, Campeau E, Beausejour CM, Kim SH, et al. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J Cell Sci. 2011;124(Pt 1):68–81. Hohn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, Kehm R, Konig J, Grune T, Castro JP. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501. Myrianthopoulos V, Evangelou K, Vasileiou PVS, Cooks T, Vassilakopoulos TP, Pangalis GA, Kouloukoussa M, Kittas C, Georgakilas AG, Gorgoulis VG. Senescence and senotherapeutics: a new field in cancer therapy. Pharmacol Ther. 2019;193:31–49. Ademowo OS, Dias HKI, Burton DGA, Griffiths HR. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process? Biogerontology. 2017;18(6):859–79. Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson CL, Lahat A, Day CP, Burt A, Palmer A, Anstee QM, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017;8:15691. Salminen A, Kauppinen A, Kaarniranta K. Emerging role of NF-κB signaling in the induction of senescence-associated secretory phenotype (SASP). Cellular Signalling. 2012;24(4):835–45. Miyamoto S. Nuclear initiated NF-κB signaling: NEMO and ATM take center stage. Cell Research. 2011;21(1):116–30. McCool KW, Miyamoto S. DNA damage-dependent NF-κB activation: NEMO turns nuclear signaling inside out. Immunological Reviews. 2012;246(1):311–26. Fafián-Labora JA, O’Loghlen A. Classical and nonclassical intercellular communication in senescence and ageing. Trends in Cell Biology. 2020;30(8):628–39. Childs BG, Durik M, Baker DJ, Van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nature medicine. 2015;21(12):1424–35. Xu M, Bradley EW, Weivoda MM, Hwang SM, Pirtskhalava T, Decklever T, Curran GL, Ogrodnik M, Jurk D, Johnson KO. Transplanted senescent cells induce an osteoarthritis-like condition in mice. The Journals of Gerontology: Series A. 2017;72(6):780–5. Kasper CA, Sorg I, Schmutz C, Tschon T, Wischnewski H, Kim ML, Arrieumerlou C. Cell-cell propagation of NF-κB transcription factor and MAP kinase activation amplifies innate immunity against bacterial infection. Immunity. 2010;33(5):804–16. Nguyen TA, Pang KC, Masters SL. Intercellular communication for innateimmunity. Mol Immunol. 2017;86:16–22. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage M1–M2 polarization balance. Frontiers in immunology. 2014;5:614. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. The Journal of clinical investigation. 2012;122(3):787–95. Oh H, Ghosh S. NF-κB: roles and regulation in different CD 4 + T‐cell subsets. Immunological reviews. 2013;252(1):41–51. Visekruna A, Volkov A, Steinhoff U. A key role for NF-κB transcription factor c-Rel in T-lymphocyte-differentiation and effector functions. Clinical and Developmental Immunology. 2012;2012:239368. Thompson HL, Smithey MJ, Uhrlaub JL, Jeftic I, Jergovic M, White SE, Currier N, Lang AM, Okoye A, Park B, et al. Lymph nodes as barriers to T-cell rejuvenation in aging mice and nonhuman primates. Aging Cell. 2019;18(1):e12865. Davies JS, Thompson HL, Pulko V, Padilla Torres J, Nikolich-Zugich J. Role of Cell-Intrinsic and Environmental Age-Related Changes in Altered Maintenance of Murine T Cells in Lymphoid Organs. J Gerontol A Biol Sci Med Sci. 2018;73(8):1018–26. Hu L, Mauro TM, Dang E, Man G, Zhang J, Lee D, Wang G, Feingold KR, Elias PM, Man M-Q. Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines. Journal of Investigative Dermatology. 2017;137(6):1277–85. Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Frontiers in Neuroscience. 2021;15:688090. Shintouo CM, Mets T, Beckwee D, Bautmans I, Ghogomu SM, Souopgui J, Leemans L, Meriki HD, Njemini R. Is inflammageing influenced by the microbiota in the aged gut? A systematic review. Experimental Gerontology. 2020;141:111079. Kim K-A, Jeong J-J, Yoo S-Y, Kim D-H. Gut microbiota lipopolysaccharide accelerates inflamm-aging in mice. BMC Microbiology. 2016;16(1):9. Wellman AS, Metukuri MR, Kazgan N, Xu X, Xu Q, Ren NSX, Czopik A, Shanahan MT, Kang A, Chen W, et al. Intestinal Epithelial Sirtuin 1 Regulates Intestinal Inflammation During Aging in Mice by Altering the Intestinal Microbiota. Gastroenterology. 2017;153(3):772–86. McMahan RH, Najarro KM, Mullen JE, Paul MT, Orlicky DJ, Hulsebus HJ, Kovacs EJ. A novel murine model of multi-day moderate ethanol exposure reveals increased intestinal dysfunction and liver inflammation with age. Immunity & Ageing. 2021;18(1):37. Weiskirchen S, Weiskirchen R. Resveratrol: How Much Wine Do You Have to Drink to Stay Healthy? Adv Nutr. 2016;7(4):706–18. da Luz PL, Tanaka L, Brum PC, Dourado PMM, Favarato D, Krieger JE, Laurindo FRM. Red wine and equivalent oral pharmacological doses of resveratrol delay vascular aging but do not extend life span in rats. Atherosclerosis. 2012;224(1):136–42. Anton SD, Ebner N, Dzierzewski JM, Zlatar ZZ. GurkaMJ, Dotson VM, Kirton J, Mankowski RT, Marsiske M, Manini TM: Effects of 90 days of resveratrol supplementation on cognitive function in elders: a pilot study. J Alternative Complement Med. 2018;24(7):725–32. Chang C-C, Chang C-Y, Lin P-C, Huang J-P, Chen K-H, Yen T-H, Hung L-M. Administration of low-dose resveratrol attenuated hepatic inflammation and lipid accumulation in high cholesterol-fructose diet-induced rat model of nonalcoholic fatty liver disease. Chinese Journal of Physiology. 2020;63(4):149–55. Mankowski RT, You L, Buford TW, Leeuwenburgh C, Manini TM, Schneider S, Qiu P, Anton SD. Higher dose of resveratrol elevated cardiovascular disease risk biomarker levels in overweight older adults – A pilot study. Experimental Gerontology. 2020;131:110821. Foster SL, Hargreaves DC, Medzhitov R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature. 2007;447(7147):972–8. Netea Mihai G, Joosten Leo AB, Latz E, Mills Kingston HG, Natoli G, Stunnenberg Hendrik G, O’Neill Luke AJ, Xavier Ramnik J. Trained immunity: A program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. Montagne A, Zhao Z, Zlokovic BV. Alzheimer’s disease: A matter of blood–brain barrier dysfunction? Journal of Experimental Medicine. 2017;214(11):3151–69. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, Esposito K, Jönsson LS, Kolb H, Lansink M, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. British Journal of Nutrition. 2011;106(S3):S1–78. Budai Z, Balogh L, Sarang Z. Short-term high-fat meal intake alters the expression of circadian clock-, inflammation-, and oxidative stress-related genes in human skeletal muscle. International Journal of Food Sciences and Nutrition. 2019;70(6):749–58. Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology. 2018;155(4):407–17. Acosta-Rodríguez VA, de Groot MHM, Rijo-Ferreira F, Green CB, Takahashi JS. Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. Cell Metabolism. 2017;26(1):267-277.e262. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong Eric A, Gill S, Leblanc M, Chaix A, Joens M, Fitzpatrick James AJ, et al. Time-Restricted Feeding without Reducing Caloric Intake Prevents Metabolic Diseases in Mice Fed a High-Fat Diet. Cell Metabolism. 2012;15(6):848–60. Gachon F, Yeung J, Naef F. Cross-regulatory circuits linking inflammation, high-fat diet, and the circadian clock. Genes & Development. 2018;32(21–22):1359–60. Gibbs J, Ince L, Matthews L, Mei J, Bell T, Yang N, Saer B, Begley N, Poolman T, Pariollaud M, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nature Medicine. 2014;20(8):919–26. Spengler ML, Kuropatwinski KK, Comas M, Gasparian AV, Fedtsova N, Gleiberman AS, Gitlin II, Artemicheva NM, Deluca KA, Gudkov AV, et al. Core circadian protein CLOCK is a positive regulator of NF-κB–mediated transcription. Proceed Natl Acad Sci. 2012;109(37):E2457–65. Hong H-K, Maury E, Ramsey KM, Perelis M, Marcheva B, Omura C, Kobayashi Y, Guttridge DC, Barish GD, Bass J. Requirement for NF-κB in maintenance of molecular and behavioral circadian rhythms in mice. Genes & Development. 2018;32(21–22):1367–79.