NADPH oxidase mediates β-amyloid peptide-induced activation of ERK in hippocampal organotypic cultures

Molecular Brain - Tập 2 - Trang 1-10 - 2009
Faridis Serrano1, Angela Chang2, Caterina Hernandez2,3, Robia G Pautler1,2, J David Sweatt2,4, Eric Klann1,2,3
1Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, USA
2Department of Neuroscience, Baylor College of Medicine, Houston, USA
3Center for Neural Science, New York University, New York, USA
4Department of Neurobiology, University of Alabama, AL, USA

Tóm tắt

Previous studies have shown that beta amyloid (Aβ) peptide triggers the activation of several signal transduction cascades in the hippocampus, including the extracellular signal-regulated kinase (ERK) cascade. In this study we sought to characterize the cellular localization of phosphorylated, active ERK in organotypic hippocampal cultures after acute exposure to either Aβ (1-42) or nicotine. We observed that Aβ and nicotine increased the levels of active ERK in distinct cellular localizations. We also examined whether phospho-ERK was regulated by redox signaling mechanisms and found that increases in active ERK induced by Aβ and nicotine were blocked by inhibitors of NADPH oxidase. Our findings indicate that NADPH oxidase-dependent redox signaling is required for Aβ-induced activation of ERK, and suggest a similar mechanism may occur during early stages of Alzheimer's disease.

Tài liệu tham khảo

Kuo YM, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, Ball MJ, Roher AE: Water-soluble Abeta (N-40, N-42) oligomers in normal and Alzheimer disease brains. J Biol Chem. 1996, 271: 4077-4081. 10.1074/jbc.271.8.4077. Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R: APP processing and synaptic function. Neuron. 2003, 37: 925-937. 10.1016/S0896-6273(03)00124-7. Bell KA, O'Riordan KJ, Sweatt JD, Dineley KT: MAPK recruitment by beta-amyloid in organotypic hippocampal slice cultures depends on physical state and exposure time. J Neurochem. 2004, 91: 349-361. 10.1111/j.1471-4159.2004.02722.x. Dineley KT, Westerman M, Bui D, Bell K, Ashe KH, Sweatt JD: Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J Neurosci. 2001, 21: 4125-4133. Dineley KT, Bell KA, Bui D, Sweatt JD: beta-Amyloid peptide activates alpha 7 nicotinic acetylcholine receptors expressed in Xenopus oocytes. J Biol Chem. 2002, 277: 25056-25061. 10.1074/jbc.M200066200. Dougherty JJ, Wu J, Nichols RA: Beta-amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J Neurosci. 2003, 23: 6740-6747. Halliwell B: Oxidative stress and neurodegeneration: where are we now?. J Neurochem. 2006, 97: 1634-1658. 10.1111/j.1471-4159.2006.03907.x. Kishida KT, Klann E: Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal. 2007, 9: 233-244. 10.1089/ars.2007.9.233. Bedard K, Krause KH: The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007, 87: 245-313. 10.1152/physrev.00044.2005. Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA: Neutrophil nicotinamide adenine dinucleotide phosphate oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochrome b558. J Clin Invest. 1991, 87: 352-356. 10.1172/JCI114993. Park JW, Ma M, Ruedi JM, Smith RM, Babior BM: The cytosolic components of the respiratory burst oxidase exist as a M(r) approximately 240,000 complex that acquires a membrane-binding site during activation of the oxidase in a cell-free system. J Biol Chem. 1992, 267: 17327-17332. Bokoch GM, Knaus UG: NADPH oxidases: not just for leukocytes anymore!. Trends Biochem Sci. 2003, 28: 502-508. 10.1016/S0968-0004(03)00194-4. Lambeth JD: NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004, 4: 181-189. 10.1038/nri1312. Dvorakova M, Hohler B, Richter E, Burritt JB, Kummer W: Rat sensory neurons contain cytochrome b558 large subunit immunoreactivity. Neuroreport. 1999, 10: 2615-2617. 10.1097/00001756-199908200-00032. Tammariello SP, Quinn MT, Estus S: NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci. 2000, 20: RC53- Kim YH, Koh JY: The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol. 2002, 177: 407-418. 10.1006/exnr.2002.7990. Noh KM, Koh JY: Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci. 2000, 20: RC111- Mizuki K, Kadomatsu K, Hata K, Ito T, Fan QW, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K, Sumimoto H: Functional modules and expression of mouse p40(phox) and p67(phox), SH3- domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur J Biochem. 1998, 251: 573-582. 10.1046/j.1432-1327.1998.2510573.x. Serrano F, Kolluri NS, Wientjes FB, Card JP, Klann E: NADPH oxidase immunoreactivity in the mouse brain. Brain Res. 2003, 988: 193-198. 10.1016/S0006-8993(03)03364-X. Tejada-Simon MV, Serrano F, Villasana LE, Kanterewicz BI, Wu GY, Quinn MT, Klann E: Synaptic localization of a functional NADPH oxidase in the mouse hippocampus. Mol Cell Neurosci. 2005, 29: 97-106. 10.1016/j.mcn.2005.01.007. Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S: NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci USA. 2003, 100: 6145-6150. 10.1073/pnas.0937239100. Kishida KT, Hoeffer CA, Hu D, Pao M, Holland SM, Klann E: Synaptic plasticity deficits and mild memory impairments in mouse models of chronic granulomatous disease. Mol Cell Biol. 2006, 26: 5908-5920. 10.1128/MCB.00269-06. Klann E: Cell-permeable scavengers of superoxide prevent long-term potentiation in hippocampal area CA1. J Neurophysiol. 1998, 80: 452-457. Klann E, Roberson ED, Knapp LT, Sweatt JD: A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem. 1998, 273: 4516-4522. 10.1074/jbc.273.8.4516. Thiels E, Urban NN, Gonzalez-Burgos GR, Kanterewicz BI, Barrionuevo G, Chu CT, Oury TD, Klann E: Impairment of long-term potentiation and associative memory in mice that overexpress extracellular superoxide dismutase. J Neurosci. 2000, 20: 7631-7639. Shimohama S, Tanino H, Kawakami N, Okamura N, Kodama H, Yamaguchi T, Hayakawa T, Nunomura A, Chiba S, Perry G, et al: Activation of NADPH oxidase in Alzheimer's disease brains. Biochem Biophys Res Commun. 2000, 273: 5-9. 10.1006/bbrc.2000.2897. Park L, Zhou P, Pitstick R, Capone C, Anrather J, Norris EH, Younkin L, Younkin S, Carlson G, McEwen BS, Iadecola C: Nox2-derived radicals contribute to neurovascular and behavioral dysfunction in mice overexpressing the amyloid precursor protein. Proc Natl Acad Sci USA. 2008, 105: 1347-1352. 10.1073/pnas.0711568105. Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, Simonyi A, Sun GY: Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release from cytosolic phospholipase A2 in cortical neurons. J Neurochem. 2008, 106: 45-55. 10.1111/j.1471-4159.2008.05347.x. Wang HY, Lee DH, D'Andrea MR, Peterson PA, Shank RP, Reitz AB: beta-Amyloid(1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer's disease pathology. J Biol Chem. 2000, 275: 5626-5632. 10.1074/jbc.275.8.5626. Wang HY, Lee DH, Davis CB, Shank RP: Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem. 2000, 75: 1155-1161. 10.1046/j.1471-4159.2000.0751155.x. Alkondon M, Albuquerque EX: Diversity of nicotinic acetylcholine receptors in rat hippocampal neurons. I. Pharmacological and functional evidence for distinct structural subtypes. J Pharmacol Exp Ther. 1993, 265: 1455-1473. Alkondon M, Pereira EF, Wonnacott S, Albuquerque EX: Blockade of nicotinic currents in hippocampal neurons defines methyllycaconitine as a potent and specific receptor antagonist. Mol Pharmacol. 1992, 41: 802-808. Abramov AY, Duchen MR: The role of an astrocytic NADPH oxidase in the neurotoxicity of amyloid beta peptides. Philos Trans R Soc Lond B Biol Sci. 2005, 360: 2309-2314. 10.1098/rstb.2005.1766. Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS: Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem. 2002, 83: 973-983. 10.1046/j.1471-4159.2002.01210.x. Wilkinson BL, Landreth GE: The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer's disease. J Neuroinflammation. 2006, 3: 30-10.1186/1742-2094-3-30. Chong YH, Shin YJ, Lee EO, Kayed R, Glabe CG, Tenner AJ: ERK1/2 activation mediates Abeta oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem. 2006, 281: 20315-20325. 10.1074/jbc.M601016200. Webster B, Hansen L, Adame A, Crews L, Torrance M, Thal L, Masliah E: Astroglial activation of extracellular-regulated kinase in early stages of Alzheimer disease. J Neuropathol Exp Neurol. 2006, 65: 142-151. 10.1097/01.jnen.0000199599.63204.6f. Kanterewicz BI, Knapp LT, Klann E: Stimulation of p42 and p44 mitogen-activated protein kinases by reactive oxygen species and nitric oxide in hippocampus. J Neurochem. 1998, 70: 1009-1016. Sweatt JD: Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004, 14: 311-317. 10.1016/j.conb.2004.04.001. Kishida KT, Pao M, Holland SM, Klann E: NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1. J Neurochem. 2005, 94: 299-306. 10.1111/j.1471-4159.2005.03189.x. Andersen JM, Myhre O, Aarnes H, Vestad TA, Fonnum F: Identification of the hydroxyl radical and other reactive oxygen species in human neutrophil granulocytes exposed to a fragment of the amyloid beta peptide. Free Radic Res. 2003, 37: 269-279. 10.1080/1071576021000046631. Frank GD, Eguchi S, Yamakawa T, Tanaka S, Inagami T, Motley ED: Involvement of reactive oxygen species in the activation of tyrosine kinase and extracellular signal-regulated kinase by angiotensin II. Endocrinology. 2000, 141: 3120-3126. 10.1210/en.141.9.3120. Chan SH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JY: NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res. 2005, 97: 772-780. 10.1161/01.RES.0000185804.79157.C0. Espinosa A, Leiva A, Pena M, Muller M, Debandi A, Hidalgo C, Carrasco MA, Jaimovich E: Myotube depolarization generates reactive oxygen species through NAD(P)H oxidase; ROS-elicited Ca2+ stimulates ERK, CREB, early genes. J Cell Physiol. 2006, 209: 379-388. 10.1002/jcp.20745. Jaimes EA, Tian RX, Raij L: Nicotine: the link between cigarette smoking and the progression of renal injury?. Am J Physiol Heart Circ Physiol. 2007, 292: H76-82. 10.1152/ajpheart.00693.2006. Dineley KT: Beta-amyloid peptide--nicotinic acetylcholine receptor interaction: the two faces of health and disease. Front Biosci. 2007, 12: 5030-5038. 10.2741/2445. Alkondon M, Pereira EF, Barbosa CT, Albuquerque EX: Neuronal nicotinic acetylcholine receptor activation modulates gamma-aminobutyric acid release from CA1 neurons of rat hippocampal slices. J Pharmacol Exp Ther. 1997, 283: 1396-1411. Gray R, Rajan AS, Radcliffe KA, Yakehiro M, Dani JA: Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature. 1996, 383: 713-716. 10.1038/383713a0. Ji D, Lape R, Dani JA: Timing and location of nicotinic activity enhances or depresses hippocampal synaptic plasticity. Neuron. 2001, 31: 131-141. 10.1016/S0896-6273(01)00332-4. Stoppini L, Buchs PA, Muller D: A simple method for organotypic cultures of nervous tissue. J Neurosci Methods. 1991, 37: 173-182. 10.1016/0165-0270(91)90128-M.