Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
U xơ nhầy chứa biến thể di truyền gây bệnh MLH1 liên quan đến hội chứng Muir-Torre: một báo cáo ca bệnh
Tóm tắt
Hội chứng Muir–Torre (MTS), chiếm một phần nhỏ (1–3%) trong hội chứng Lynch (LS), là một rối loạn di truyền trội tự nhiên được đặc trưng bởi sự xuất hiện của u tuyến bã nhờn hoặc keratoacanthoma kèm theo các khối u ác tính nội tạng. Hầu hết các gia đình có MTS đều có các biến thể germline gây bệnh (PGV) trong gen MSH2. U sarcoma là không phổ biến trong quang phổ u của LS, và các khối u sarcoma liên quan đến MTS thì cực kỳ hiếm. Ở đây, chúng tôi báo cáo một trường hợp u xơ nhầy của thành bụng ở một người đàn ông 73 tuổi có u tuyến bã nhờn xảy ra đồng thời, dẫn đến chẩn đoán MTS. Sự mất biểu hiện protein của MLH1 và PMS2 đã được phát hiện trong xét nghiệm miễn dịch mô học, và sự không ổn định vi vết mật độ cao (MSI-H) cũng được xác nhận. Phân tích di truyền germline cho thấy ông mang biến thể MLH1 PGV. Đây là trường hợp đầu tiên của u xơ nhầy MSI-H có MTS ở người mang biến thể MLH1 PGV. Mặc dù hiếm, chúng ta nên nhận thức rằng các khối u sarcoma có thể là một phần của quang phổ LS và MTS.
Từ khóa
#hội chứng Muir-Torre #u xơ nhầy #biến thể di truyền gây bệnh MLH1 #không ổn định vi vết mật độ cao #hội chứng LynchTài liệu tham khảo
Ponti G, de Leon MP. Muir-Torre syndrome. Lancet Oncol. 2005;6(12):980–7.
Schwartz RA, Torre DP. The Muir-Torre syndrome: a 25-year retrospect. J Am Acad Dermatol. 1995;33(1):90–104.
Ponti G, Losi L, Pedroni M, Lucci-Cordisco E, Di Gregorio C, Pellacani G, et al. Value of MLH1 and MSH2 mutations in the appearance of Muir-Torre syndrome phenotype in HNPCC patients presenting sebaceous gland tumors or keratoacanthomas. J Invest Dermatol. 2006;126(10):2302–7.
South CD, Hampel H, Comeras I, Westman JA, Frankel WL, de la Chapelle A. The frequency of Muir-Torre syndrome among Lynch syndrome families. J Natl Cancer Inst. 2008;100(4):277–81.
Yozu M, Symmans P, Dray M, Griffin J, Han C, Ng D, et al. Muir-Torre syndrome-associated pleomorphic liposarcoma arising in a previous radiation field. Virchows Arch. 2013;462(3):355–60.
Sijmons R, Hofstra R, Hollema H, Mensink R, van der Hout A, Hoekstra H, et al. Inclusion of malignant fibrous histiocytoma in the tumour spectrum associated with hereditary non-polyposis colorectal cancer. Genes Chromosomes Cancer. 2000;29(4):353–5.
Hirata K, Kanemitsu S, Nakayama Y, Nagata N, Itoh H, Ohnishi H, et al. A novel germline mutation of MSH2 in a hereditary nonpolyposis colorectal cancer patient with liposarcoma. Am J Gastroenterol. 2006;101(1):193–6.
Nilbert M, Therkildsen C, Nissen A, Akerman M, Bernstein I. Sarcomas associated with hereditary nonpolyposis colorectal cancer: broad anatomical and morphological spectrum. Fam Cancer. 2009;8(3):209–13.
Latham A, Srinivasan P, Kemel Y, Shia J, Bandlamudi C, Mandelker D, et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J Clin Oncol. 2019;37(4):286–95.
Lee N, Luthra R, Lopez-Terrada D, Wang WL, Lazar AJ. Retroperitoneal undifferentiated pleomorphic sarcoma having microsatellite instability associated with Muir-Torre syndrome: case report and review of literature. J Cutan Pathol. 2013;40(8):730–3.
de Angelis de Carvalho N, Niitsuma BN, Kozak VN, Costa FD, de Macedo MP, Kupper BEC, et al. Clinical and Molecular Assessment of Patients with Lynch Syndrome and Sarcomas Underpinning the Association with MSH2 Germline Pathogenic Variants. Cancers. 2020;12(7):1848. https://doi.org/10.3390/cancers12071848.
board WHOcte. Soft tissue and bone tumours. 5th ed. Lyon: World Health Organization International Agency for Research on Cancer; 2020. p. 607.
Look Hong NJ, Hornicek FJ, Raskin KA, Yoon SS, Szymonifka J, Yeap B, et al. Prognostic factors and outcomes of patients with myxofibrosarcoma. Ann Surg Oncol. 2013;20(1):80–6.
Iwata S, Yonemoto T, Araki A, Ikebe D, Kamoda H, Hagiwara Y, et al. Impact of infiltrative growth on the outcome of patients with undifferentiated pleomorphic sarcoma and myxofibrosarcoma. J Surg Oncol. 2014;110(6):707–11.
Vasen HF, Moslein G, Alonso A, Bernstein I, Bertario L, Blanco I, et al. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J Med Genet. 2007;44(6):353–62.
Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.
Nguyen A, Bougeard G, Koob M, Chenard MP, Schneider A, Maugard C, et al. MSI detection and its pitfalls in CMMRD syndrome in a family with a bi-allelic MLH1 mutation. Fam Cancer. 2016;15(4):571–7.
Dominguez-Valentin M, Sampson JR, Seppala TT, Ten Broeke SW, Plazzer JP, Nakken S, et al. Cancer risks by gene, age, and gender in 6350 carriers of pathogenic mismatch repair variants: findings from the Prospective Lynch Syndrome Database. Genet Med. 2020;22(1):15–25.
Moller P, Seppala T, Bernstein I, Holinski-Feder E, Sala P, Evans DG, et al. Incidence of and survival after subsequent cancers in carriers of pathogenic MMR variants with previous cancer: a report from the prospective Lynch syndrome database. Gut. 2017;66(9):1657–64.
Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med. 2015;372(26):2509–20.
Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409–13.
Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J Clin Oncol. 2020;38(1):1–10.
Tlemsani C, Leroy K, Gimenez-Roqueplo AP, Mansuet-Lupo A, Pasmant E, Larousserie F, et al. Chemoresistant pleomorphic rhabdomyosarcoma: whole exome sequencing reveals underlying cancer predisposition and therapeutic options. J Med Genet. 2020;57(2):104–8.
Trabucco SE, Gowen K, Maund SL, Sanford E, Fabrizio DA, Hall MJ, et al. A Novel Next-Generation Sequencing Approach to Detecting Microsatellite Instability and Pan-Tumor Characterization of 1000 Microsatellite Instability-High Cases in 67,000 Patient Samples. J Mol Diagn. 2019;21(6):1053–66.
Doyle LA, Nowak JA, Nathenson MJ, Thornton K, Wagner AJ, Johnson JM, et al. Characteristics of mismatch repair deficiency in sarcomas. Mod Pathol. 2019;32(7):977–87.
Monga V, Skubitz KM, Maliske S, Mott SL, Dietz H, Hirbe AC, et al. A Retrospective Analysis of the Efficacy of Immunotherapy in Metastatic Soft-Tissue Sarcomas. Cancers. 2020;12(7):1873. https://doi.org/10.3390/cancers12071873.
Song HN, Kang MG, Park JR, Hwang JY, Kang JH, Lee WS, et al. Pembrolizumab for Refractory Metastatic Myxofibrosarcoma: A Case Report. Cancer Res Treat. 2018;50(4):1458–61.
Tawbi HA, Burgess M, Bolejack V, Van Tine BA, Schuetze SM, Hu J, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol. 2017;18(11):1493–501.