Myosin II activity dependent and independent vinculin recruitment to the sites of E-cadherin-mediated cell-cell adhesion
Tóm tắt
Maintaining proper adhesion between neighboring cells depends on the ability of cells to mechanically respond to tension at cell-cell junctions through the actin cytoskeleton. Thus, identifying the molecules involved in responding to cell tension would provide insight into the maintenance, regulation, and breakdown of cell-cell junctions during various biological processes. Vinculin, an actin-binding protein that associates with the cadherin complex, is recruited to cell-cell contacts under increased tension in a myosin II-dependent manner. However, the precise role of vinculin at force-bearing cell-cell junctions and how myosin II activity alters the recruitment of vinculin at quiescent cell-cell contacts have not been demonstrated. We generated vinculin knockdown cells using shRNA specific to vinculin and MDCK epithelial cells. These vinculin-deficient MDCK cells form smaller cell clusters in a suspension than wild-type cells. In wound healing assays, GFP-vinculin accumulated at cell-cell junctions along the wound edge while vinculin-deficient cells displayed a slower wound closure rate compared to vinculin-expressing cells. In the presence of blebbistatin (myosin II inhibitor), vinculin localization at quiescent cell-cell contacts was unaffected while in the presence of jasplakinolide (F-actin stabilizer), vinculin recruitment increased in mature MDCK cell monolayers. These results demonstrate that vinculin plays an active role at adherens junctions under increased tension at cell-cell contacts where vinculin recruitment occurs in a myosin II activity-dependent manner, whereas vinculin recruitment to the quiescent cell-cell junctions depends on F-actin stabilization.
Tài liệu tham khảo
le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N, Leckband D, de Rooij J: Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II-dependent manner. J Cell Biol. 189 (7): 1107-1115.
Alenghat FJ, Fabry B, Tsai KY, Goldmann WH, Ingber DE: Analysis of cell mechanics in single vinculin-deficient cells using a magnetic tweezer. Biochem Biophys Res Commun. 2000, 277 (1): 93-99. 10.1006/bbrc.2000.3636.
Mierke CT, Kollmannsberger P, Zitterbart DP, Smith J, Fabry B, Goldmann WH: Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys J. 2008, 94 (2): 661-670. 10.1529/biophysj.107.108472.
Geiger B: A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979, 18 (1): 193-205. 10.1016/0092-8674(79)90368-4.
Menkel AR, Kroemker M, Bubeck P, Ronsiek M, Nikolai G, Jockusch BM: Characterization of an F-actin-binding domain in the cytoskeletal protein vinculin. J Cell Biol. 1994, 126 (5): 1231-1240. 10.1083/jcb.126.5.1231.
Huttelmaier S, Bubeck P, Rudiger M, Jockusch BM: Characterization of two F-actin-binding and oligomerization sites in the cell-contact protein vinculin. Eur J Biochem. 1997, 247 (3): 1136-1142. 10.1111/j.1432-1033.1997.01136.x.
Burridge K, Mangeat P: An interaction between vinculin and talin. Nature. 1984, 308 (5961): 744-746. 10.1038/308744a0.
Bass MD, Patel B, Barsukov IG, Fillingham IJ, Mason R, Smith BJ, Bagshaw CR, Critchley DR: Further characterization of the interaction between the cytoskeletal proteins talin and vinculin. Biochem J. 2002, 362 (Pt 3): 761-768.
Wood CK, Turner CE, Jackson P, Critchley DR: Characterisation of the paxillin-binding site and the C-terminal focal adhesion targeting sequence in vinculin. J Cell Sci. 1994, 107 (Pt 2): 709-717.
McGregor A, Blanchard AD, Rowe AJ, Critchley DR: Identification of the vinculin-binding site in the cytoskeletal protein alpha-actinin. Biochem J. 1994, 301 (Pt 1): 225-233.
Weekes J, Barry ST, Critchley DR: Acidic phospholipids inhibit the intramolecular association between the N- and C-terminal regions of vinculin, exposing actin-binding and protein kinase C phosphorylation sites. Biochem J. 1996, 314 (Pt 3): 827-832.
Johnson RP, Niggli V, Durrer P, Craig SW: A conserved motif in the tail domain of vinculin mediates association with and insertion into acidic phospholipid bilayers. Biochemistry. 1998, 37 (28): 10211-10222. 10.1021/bi9727242.
Johnson RP, Craig SW: F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature. 1995, 373 (6511): 261-264. 10.1038/373261a0.
Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC: Structural basis for vinculin activation at sites of cell adhesion. Nature. 2004, 430 (6999): 583-586. 10.1038/nature02610.
Borgon RA, Vonrhein C, Bricogne G, Bois PR, Izard T: Crystal structure of human vinculin. Structure. 2004, 12 (7): 1189-1197. 10.1016/j.str.2004.05.009.
Izard T, Evans G, Borgon RA, Rush CL, Bricogne G, Bois PR: Vinculin activation by talin through helical bundle conversion. Nature. 2004, 427 (6970): 171-175. 10.1038/nature02281.
Izard T, Vonrhein C: Structural basis for amplifying vinculin activation by talin. J Biol Chem. 2004, 279 (26): 27667-27678. 10.1074/jbc.M403076200.
Bois PR, O'Hara BP, Nietlispach D, Kirkpatrick J, Izard T: The vinculin binding sites of talin and alpha-actinin are sufficient to activate vinculin. J Biol Chem. 2006, 281 (11): 7228-7236. 10.1074/jbc.M510397200.
Ezzell RM, Goldmann WH, Wang N, Parashurama N, Ingber DE: Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res. 1997, 231 (1): 14-26. 10.1006/excr.1996.3451.
Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, Ballestrem C: Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol. 2007, 179 (5): 1043-1057. 10.1083/jcb.200703036.
Goldmann WH, Schindl M, Cardozo TJ, Ezzell RM: Motility of vinculin-deficient F9 embryonic carcinoma cells analyzed by video, laser confocal, and reflection interference contrast microscopy. Exp Cell Res. 1995, 221 (2): 311-319. 10.1006/excr.1995.1380.
Mierke CT, Kollmannsberger P, Zitterbart DP, Diez G, Koch TM, Marg S, Ziegler WH, Goldmann WH, Fabry B: Vinculin facilitates cell invasion into three-dimensional collagen matrices. J Biol Chem. 285 (17): 13121-13130.
Weiss EE, Kroemker M, Rudiger AH, Jockusch BM, Rudiger M: Vinculin is part of the cadherin-catenin junctional complex: complex formation between alpha-catenin and vinculin. J Cell Biol. 1998, 141 (3): 755-764. 10.1083/jcb.141.3.755.
Watabe-Uchida M, Uchida N, Imamura Y, Nagafuchi A, Fujimoto K, Uemura T, Vermeulen S, van Roy F, Adamson ED, Takeichi M: alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. J Cell Biol. 1998, 142 (3): 847-857. 10.1083/jcb.142.3.847.
Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M: alpha-Catenin as a tension transducer that induces adherens junction development. Nat Cell Biol. 12 (6): 533-542.
Hazan RB, Kang L, Roe S, Borgen PI, Rimm DL: Vinculin is associated with the E-cadherin adhesion complex. J Biol Chem. 1997, 272 (51): 32448-32453. 10.1074/jbc.272.51.32448.
Peng X, Cuff LE, Lawton CD, DeMali KA: Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. J Cell Sci. 123 (Pt 4): 567-577.
Maddugoda MP, Crampton MS, Shewan AM, Yap AS: Myosin VI and vinculin cooperate during the morphogenesis of cadherin cell cell contacts in mammalian epithelial cells. J Cell Biol. 2007, 178 (3): 529-540. 10.1083/jcb.200612042.
Miyake Y, Inoue N, Nishimura K, Kinoshita N, Hosoya H, Yonemura S: Actomyosin tension is required for correct recruitment of adherens junction components and zonula occludens formation. Exp Cell Res. 2006, 312 (9): 1637-1650. 10.1016/j.yexcr.2006.01.031.
Nathke IS, Hinck L, Swedlow JR, Papkoff J, Nelson WJ: Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J Cell Biol. 1994, 125 (6): 1341-1352. 10.1083/jcb.125.6.1341.
Rosenblatt J, Raff MC, Cramer LP: An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol. 2001, 11 (23): 1847-1857. 10.1016/S0960-9822(01)00587-5.
Yamada S, Pokutta S, Drees F, Weis WI, Nelson WJ: Deconstructing the cadherin-catenin-actin complex. Cell. 2005, 123 (5): 889-901. 10.1016/j.cell.2005.09.020.
Nguyen TN, Uemura A, Shih W, Yamada S: Zyxin-mediated actin assembly is required for efficient wound closure. J Biol Chem. 285 (46): 35439-35445.
Le Clainche C, Dwivedi SP, Didry D, Carlier MF: Vinculin is a dually regulated actin filament barbed end-capping and side-binding protein. J Biol Chem. 285 (30): 23420-23432.
Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI: Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell. 2005, 123 (5): 903-915. 10.1016/j.cell.2005.09.021.
Cavey M, Rauzi M, Lenne PF, Lecuit T: A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature. 2008, 453 (7196): 751-756. 10.1038/nature06953.