Đột biến trong nucleophosmin (NPM1) trong bệnh leukemia tủy cấp tính (AML): mối liên quan với các bất thường gen khác và các dấu hiệu biểu hiện gen đã được xác định trước đó và ý nghĩa tiên lượng tích cực của chúng

Blood - Tập 106 - Trang 3747-3754 - 2005
Roel G.W. Verhaak1, Chantal S. Goudswaard1, Wim van Putten1, Maarten A. Bijl1, Mathijs A. Sanders1, Wendy Hugens1, André G. Uitterlinden1, Claudia A.J. Erpelinck1, Ruud Delwel1, Bob Löwenberg1, Peter J.M. Valk1
1Departments of Hematology, Statistics, and Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.

Tóm tắt

Các đột biến trong nucleophosmin NPM1 là những bất thường phân tử thu được phổ biến nhất trong bệnh leukemia tủy cấp tính (AML). Chúng tôi đã xác định trạng thái đột biến NPM1 trong một nhóm bệnh nhân được mô tả lâm sàng và phân tử tốt với 275 bệnh nhân vừa được chẩn đoán AML bằng sắc ký lỏng hiệu năng cao biến tính (dHPLC). Chúng tôi cho thấy rằng đột biến NPM1 bị thiếu đáng kể ở những bệnh nhân dưới 35 tuổi. Đột biến NPM1 có sự tương quan tích cực với AML có số lượng bạch cầu cao, kiểu gen bình thường, và các đột biến sao chép nội bộ (ITD) của gen kinase tyrosine giống fms (FLT3). Các đột biến NPM1 có mối quan hệ ngược với sự xuất hiện của các đột biến protein liên kết với CCAAT/enhancer-binding protein-α (CEBPA) và NRAS. Về khía cạnh profiling biểu hiện gen, chúng tôi cho thấy rằng các trường hợp AML có đột biến NPM1 tập hợp trong các kiểu phân loại cụ thể của AML với các chữ ký biểu hiện gen đã được xác lập trước đó, có sự liên kết mạnh mẽ với một chữ ký biểu hiện đặc hiệu của gen homeobox, và có thể được dự đoán với độ chính xác cao. Chúng tôi chứng minh rằng những bệnh nhân AML có nguy cơ tế bào trung bình mà không có các đột biến ITD của FLT3 nhưng có các đột biến NPM1 có tỷ lệ sống sót toàn bộ (OS) và sống sót không sự kiện (EFS) tốt hơn đáng kể so với những người không có đột biến NPM1. Cuối cùng, trong phân tích đa biến, các đột biến NPM1 thể hiện giá trị tiên lượng độc lập tích cực theo OS, EFS và sống sót không bệnh (DFS).

Từ khóa


Tài liệu tham khảo

Lowenberg B, Downing JR, Burnett A. Acute myeloid leukemia. N Engl J Med. 1999;341: 1051-1062. Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood. 2000;96: 4075-4083. Byrd JC, Mrozek K, Dodge RK, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100: 4325-4336. Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood. 1998;92: 2322-2333. Grimwade D, Walker H, Harrison G, et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood. 2001;98: 1312-1320. Gilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100: 1532-1542. Levis M, Small D. FLT3: ITDoes matter in leukemia. Leukemia. 2003;17: 1738-1752. Shiah HS, Kuo YY, Tang JL, et al. Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia. 2002;16: 196-202. Dohner K, Tobis K, Ulrich R, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics: a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol. 2002;20: 3254-3261. Barjesteh van Waalwijk van Doorn-Khosrovani S, Erpelinck C, van Putten WL, et al. High EVI1 expression predicts poor survival in acute myeloid leukemia: a study of 319 de novo AML patients. Blood. 2003;101: 837-845. Preudhomme C, Sagot C, Boissel N, et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood. 2002;100: 2717-2723. van Waalwijk van Doorn-Khosrovani SB, Erpelinck C, Meijer J, et al. Biallelic mutations in the CEBPA gene and low CEBPA expression levels as prognostic markers in intermediate-risk AML. Hematol J. 2003;4: 31-40. Falini B, Mecucci C, Tiacci E, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005; 352: 254-266. Dumbar TS, Gentry GA, Olson MO. Interaction of nucleolar phosphoprotein B23 with nucleic acids. Biochemistry. 1989;28: 9495-9501. Cordell JL, Pulford KA, Bigerna B, et al. Detection of normal and chimeric nucleophosmin in human cells. Blood. 1999;93: 632-642. Borer RA, Lehner CF, Eppenberger HM, Nigg EA. Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell. 1989;56: 379-390. Morris SW, Kirstein MN, Valentine MB, et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science. 1994;263: 1281-1284. Redner RL, Rush EA, Faas S, Rudert WA, Corey SJ. The t(5;17) variant of acute promyelocytic leukemia expresses a nucleophosmin-retinoic acid receptor fusion. Blood. 1996;87: 882-886. Yoneda-Kato N, Look AT, Kirstein MN, et al. The t(3;5)(q25.1;q34) of myelodysplastic syndrome and acute myeloid leukemia produces a novel fusion gene, NPM-MLF1. Oncogene. 1996;12: 265-275. Valk PJ, Delwel R, Lowenberg B. Gene expression profiling in acute myeloid leukemia. Curr Opin Hematol. 2005;12: 76-81. Valk PJ, Verhaak RG, Beijen MA, et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med. 2004;350: 1617-1628. Bullinger L, Dohner K, Bair E, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med. 2004;350: 1605-1616. Ross ME, Mahfouz R, Onciu M, et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood. 2004;104: 3679-3687. Alcalay M, Tiacci E, Bergomas R, et al. Acute myeloid leukemia bearing cytoplasmic nucleophosmin (NPMc+AML) shows a distinct gene expression profile characterized by up-regulation of genes involved in stem cell maintenance. Blood. 2005;106: 899-902. Lowenberg B, Boogaerts MA, Daenen SM, et al. Value of different modalities of granulocyte-macrophage colony-stimulating factor applied during or after induction therapy of acute myeloid leukemia. J Clin Oncol. 1997;15: 3496-3506. Lowenberg B, van Putten W, Theobald M, et al. Effect of priming with granulocyte colony-stimulating factor on the outcome of chemotherapy for acute myeloid leukemia. N Engl J Med. 2003;349: 743-752. Ossenkoppele GJ, Graveland WJ, Sonneveld P, et al. The value of fludarabine in addition to ARA-C and G-CSF in the treatment of patients with high-risk myelodysplastic syndromes and AML in elderly patients. Blood. 2004;103: 2908-2913. Van der Reijden BA, de Wit L, van der Poel S, et al. Identification of a novel CBFB-MYH11 transcript: implications for RT-PCR diagnosis. Hematol J. 2001;2: 206-209. Choy YS, Dabora SL, Hall F, et al. Superiority of denaturing high performance liquid chromatography over single-stranded conformation and conformation-sensitive gel electrophoresis for mutation detection in TSC2. Ann Hum Genet. 1999; 63(pt 5): 383-391. Valk PJM, Bowen DT, Frew ME, Goodeve AC, Löwenberg B, Reilly JT. Second hit mutations in the RTK/RAS signalling pathway in acute myeloid leukaemia and inv(16) [letter]. Haematologica. 2004;89: 106. Care RS, Valk PJ, Goodeve AC, et al. Incidence and prognosis of c-KIT and FLT3 mutations in core binding factor (CBF) acute myeloid leukaemias. Br J Haematol. 2003;121: 775-777. Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98: 5116-5121. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc Natl Acad Sci U S A. 2002;99: 6567-6572. Cazzaniga G, Dell'oro MG, Mecucci C, et al. Nucleophosmin mutations in childhood acute myelogenous leukemia with normal karyotype. Blood. 2005;106: 1419-1422. Gilliland DG. Molecular genetics of human leukemias: new insights into therapy. Semin Hematol. 2002;39: 6-11. Engelhardt M, Lubbert M, Guo Y. CD34(+) or CD34(–): which is the more primitive? Leukemia. 2002;16: 1603-1608. Guo Y, Lubbert M, Engelhardt M. CD34-hematopoietic stem cells: current concepts and controversies. Stem Cells. 2003;21: 15-20. Grier DG, Thompson A, Kwasniewska A, McGonigle GJ, Halliday HL, Lappin TR. The pathophysiology of HOX genes and their role in cancer. J Pathol. 2005;205: 154-171. Daser A, Rabbitts TH. The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol. 2005;15: 175-188. Armstrong SA, Staunton JE, Silverman LB, et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002;30: 41-47. Chang H, Salma F, Yi QL, Patterson B, Brien B, Minden MD. Prognostic relevance of immunophenotyping in 379 patients with acute myeloid leukemia. Leuk Res. 2004;28: 43-48. Myint H, Lucie NP. The prognostic significance of the CD34 antigen in acute myeloid leukaemia. Leuk Lymphoma. 1992;7: 425-429. Raspadori D, Lauria F, Ventura MA, et al. Incidence and prognostic relevance of CD34 expression in acute myeloblastic leukemia: analysis of 141 cases. Leuk Res. 1997;21: 603-607. Lowenberg B. Prognostic factors in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001; 14: 65-75.