Mutations at Residues 282, 286, and 293 of Phage λ Integrase Exert Pathway-Specific Effects on Synapsis and Catalysis in Recombination
Tóm tắt
Từ khóa
Tài liệu tham khảo
Azaro M. A. and A. Landy. 2002. λ integrase and the λ Int family p. 118-148. In N. L. Craig R. Craigie M. Gellert and A. M. Lambowitz (ed.) Mobile DNA II. American Society for Microbiology Washington D.C.
Bankhead, T., and A. M. Segall. 2000. Characterization of a mutation of bacteriophage lambda integrase. Putative role in core binding and strand exchange for a conserved residue. J. Biol. Chem.275:36949-36956.
Burgin, A. B., Jr., and H. A. Nash. 1995. Suicide substrates reveal properties of the homology-dependent steps during integrative recombination of bacteriophage lambda. Curr. Biol.5:1312-1321.
Burgin, A. B., Jr., and H. A. Nash. 1992. Symmetry in the mechanism of bacteriophage lambda integrative recombination. Proc. Natl. Acad. Sci. USA89:9642-9646.
Cassell, G. D., and A. M. Segall. 2003. Mechanism of inhibition of site-specific recombination by the Holliday junction-trapping peptide WKHYNY: insights into phage λ integrase-mediated strand exchange. J. Mol. Biol.327:413-429.
Cassell, G., M. Klemm, C. Pinilla, and A. Segall. 2000. Dissection of bacteriophage lambda site-specific recombination using synthetic peptide combinatorial libraries. J. Mol. Biol.299:1193-1202.
Cheng, C., P. Kussie, N. Pavletich, and S. Shuman. 1998. Conservation of structure and mechanism between eukaryotic topoisomerase I and site-specific recombinases. Cell92:841-850.
Cheng, Q., B. M. Swalla, M. Beck, R. Alcaraz, Jr., R. I. Gumport, and J. F. Gardner. 2000. Specificity determinants for bacteriophage Hong Kong 022 integrase: analysis of mutants with relaxed core-binding specificities. Mol. Microbiol.36:424-436.
Craig, N. L., and H. A. Nash. 1983. The mechanism of phage lambda site-specific recombination: site-specific breakage of DNA by Int topoisomerase. Cell35:795-803.
Dorgai, L., S. Sloan, and R. A. Weisberg. 1998. Recognition of core binding sites by bacteriophage integrases. J. Mol. Biol.277:1059-1070.
Dorgai, L., E. Yagil, and R. A. Weisberg. 1995. Identifying determinants of recombination specificity: construction and characterization of mutant bacteriophage integrases. J. Mol. Biol.252:178-188.
Enquist, L. W., and R. A. Weisberg. 1977. A genetic analysis of the att-int-xis region of coliphage lambda. J. Mol. Biol.111:97-120.
Gardner, J. F., and H. A. Nash. 1986. Role of Escherichia coli IHF protein in lambda site-specific recombination. A mutational analysis of binding sites. J. Mol. Biol.191:181-189.
Goodman, S. D., S. C. Nicholson, and H. A. Nash. 1992. Deformation of DNA during site-specific recombination of bacteriophage lambda: replacement of IHF protein by HU protein or sequence-directed bends. Proc. Natl. Acad. Sci. USA89:11910-11914.
Gopaul, D. N., F. Guo, and G. D. Van Duyne. 1998. Structure of the Holliday junction intermediate in Cre-loxP site-specific recombination. EMBO J.17:4175-4187.
Grishin, N. V. 2000. Two tricks in one bundle: helix-turn-helix gains enzymatic activity. Nucleic Acids Res.28:2229-2233.
Guo, F., D. N. Gopaul, and G. D. Van Duyne. 1999. Asymmetric DNA bending in the Cre-loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA96:7143-7148.
Guo, F., D. N. Gopaul, and G. D. van Duyne. 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature389:40-46.
Han, Y. W., R. I. Gumport, and J. F. Gardner. 1994. Mapping the functional domains of bacteriophage lambda integrase protein. J. Mol. Biol.235:908-925.
Jessop L. 2000. Architecture of the synaptic intermediates of the site-specific recombination pathways mediated by the bacteriophage lambda integrase. Ph.D. thesis. San Diego State University and University of California San Diego San Diego Calif.
Kim, S., and A. Landy. 1992. Lambda Int protein bridges between higher order complexes at two distant chromosomal loci attL and attR. Science256:198-203.
Kim, S., L. Moitoso de Vargas, S. E. Nunes-Duby, and A. Landy. 1990. Mapping of a higher order protein-DNA complex: two kinds of long-range interactions in lambda attL. Cell63:773-781.
Klemm, M., C. Cheng, G. Cassell, S. Shuman, and A. M. Segall. 2000. Peptide inhibitors of DNA cleavage by tyrosine recombinases and topoisomerases. J. Mol. Biol.299:1203-1216.
Krogh, B. O., and S. Shuman. 2000. Catalytic mechanism of DNA topoisomerase IB. Mol. Cell5:1035-1041.
Kwon, H. J., R. Tirumalai, A. Landy, and T. Ellenberger. 1997. Flexibility in DNA recombination: structure of the lambda integrase catalytic core. Science276:126-131.
Landy, A. 1989. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu. Rev. Biochem.58:913-949.
Moitoso de Vargas, L., C. A. Pargellis, N. M. Hasan, E. W. Bushman, and A. Landy. 1988. Autonomous DNA binding domains of lambda integrase recognize two different sequence families. Cell54:923-929.
Nash H. A. 1996. Site-specific recombination: integration excision resolution and inversion of defined DNA segments p. 2363-2376. In F. H. C. Neidhardt et al. (ed.) Escherichia coli and Salmonella : cellular and molecular biology 2nd ed. vol. 2. ASM Press Washington D.C.
Nash, H. A., and C. A. Robertson. 1989. Heteroduplex substrates for bacteriophage lambda site-specific recombination: cleavage and strand transfer products. EMBO J.8:3523-3533.
Numrych, T. E., R. I. Gumport, and J. F. Gardner. 1990. A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res.18:3953-3959.
Nunes-Duby, S. E., H. J. Kwon, R. S. Tirumalai, T. Ellenberger, and A. Landy. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res.26:391-406.
Nunes-Duby, S. E., D. Yu, and A. Landy. 1997. Sensing homology at the strand-swapping step in lambda excisive recombination. J. Mol. Biol.272:493-508.
Pargellis, C. A., S. E. Nunes-Duby, L. M. de Vargas, and A. Landy. 1988. Suicide recombination substrates yield covalent lambda integrase-DNA complexes and lead to identification of the active site tyrosine. J. Biol. Chem.263:7678-7685.
Richet, E., P. Abcarian, and H. A. Nash. 1988. Synapsis of attachment sites during lambda integrative recombination involves capture of naked DNA by a protein-DNA complex. Cell52:9-17.
Ross, W., and A. Landy. 1982. Bacteriophage lambda Int protein recognizes two classes of sequence in the phage att site: characterization of arm-type sites. Proc. Natl. Acad. Sci. USA79:7724-7728.
Sarkar, D., M. Radman-Livaja, and A. Landy. 2001. The small DNA binding domain of lambda integrase is a context-sensitive modulator of recombinase functions. EMBO J.20:1203-1212.
Segall, A. M. 1998. Analysis of higher order intermediates and synapsis in the bent-L pathway of bacteriophage lambda site-specific recombination. J. Biol. Chem.273:24258-24265.
Segall, A. M., S. D. Goodman, and H. A. Nash. 1994. Architectural elements in nucleoprotein complexes: interchangeability of specific and non-specific DNA binding proteins. EMBO J.13:4536-4548.
Segall, A. M., and H. A. Nash. 1996. Architectural flexibility in lambda site-specific recombination: three alternate conformations channel the attL site into three distinct pathways. Genes Cells1:453-463.
Segall, A. M., and H. A. Nash. 1993. Synaptic intermediates in bacteriophage lambda site-specific recombination: integrase can align pairs of attachment sites. EMBO J.12:4567-4576.
Tirumalai, R. S., E. Healey, and A. Landy. 1997. The catalytic domain of lambda site-specific recombinase. Proc. Natl. Acad. Sci. USA94:6104-6109.
Tirumalai, R. S., H. J. Kwon, E. H. Cardente, T. Ellenberger, and A. Landy. 1998. Recognition of core-type DNA sites by lambda integrase. J. Mol. Biol.279:513-527.
Wojciak, J. M., D. Sarkar, A. Landy, and R. T. Clubb. 2002. Arm-site binding by lambda integrase: solution structure and functional characterization of its amino-terminal domain. Proc. Natl. Acad. Sci. USA99:3434-3439.