Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder
Tóm tắt
Từ khóa
Tài liệu tham khảo
Varki, A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3, 97–130 (1993).
Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505–1521 (1998).
Marquardt, T. & Denecke, J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur. J. Pediatr. 162, 359–379 (2003).
Grunewald, S., Matthijs, G. & Jaeken, J. Congenital disorders of glycosylation: a review. Pediatr. Res. 52, 618–624 (2002).
Schauer, R. Biosynthesis and function of N- and O-substituted sialic acids. Glycobiology 1, 449–452 (1991).
Kim, S., Miura, Y., Etchison, J.R. & Freeze, H.H. Intact Golgi synthesize complex branched O-linked chains on glycoside primers: evidence for the functional continuity of seven glycosyltransferases and three sugar nucleotide transporters. Glycoconj. J. 18, 623–633 (2001).
Lippincott-Schwartz, J., Roberts, T.H. & Hirschberg, K. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16, 557–589 (2000).
Kingsley, D.M., Kozarsky, K.F., Segal, M. & Krieger, M. Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains. J. Cell Biol. 102, 1576–1585 (1986).
Ungar, D. et al. Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell Biol. 157, 405–415 (2002).
Whyte, J.R.C. & Munro, S. Vesicle tethering complexes in membrane traffic. J. Cell Sci. 115, 2627–2637 (2002).
Podos, S.D., Reddy, P., Ashkenas, J. & Krieger, M. LDLC encodes a Brefeldin-A sensitive, peripheral Golgi protein required for normal Golgi function. J. Cell Biol. 127, 679–691 (1994).
Chatterton, J.E. et al. Expression cloning of LDLB, a gene essential for normal Golgi function and assembly of the ldlCp complex. Proc. Natl. Acad. Sci. USA 96, 915–920 (1999).
Walter, D.M., Paul, K.S. & Waters, M.G. Purification and characterization of a novel 13 S hetero-oligomeric protein complex that stimulates in vitro Golgi transport J. Biol. Chem. 273, 29565–29576 (1998).
Loh, E. & Hong, W. Sec34 is implicated in traffic from the endoplasmic reticulum to the Golgi and exists in a complex with GTC–90 and ldlBp. J. Biol. Chem. 277, 21955–21961 (2002).
Whyte, J.R. & Munro, S. The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev. Cell 1, 527–537 (2001).
Farkas, R.M. et al. The Drosophila COG5 homologue is required for cytokinesis, cell elongation, and assembly of specialized Golgi architecture during spermatogenesis. Mol. Biol. Cell 14, 190–200 (2003).
Suvorova, E.S., Kurten, R.C. & Lupashin, V.V. Identification of a human orthologue of Sec34p as a component of the cis-Golgi vesicle tethering machinery. J. Biol. Chem. 276, 22810–22818 (2001).
Freeze, H.H. Update and perspectives on congenital disorders of glycosylation. Glycobiology 11, 129R–143R (2001).
Wopereis, S. et al. Apolipoprotein C–III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin. Chem. 49, 1839–1845 (2003).
Oka, T., Ungar, D., Hughson, F.M. & Krieger, M. The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol. Biol. Cell 15, 2423–2435 (2004).
Olkkonen, V.M. & Ikonen, E. Genetic defects of intracellular-membrane transport. N. Engl. J. Med. 343, 1095–1104 (2000).
Nichols, W.C. et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).
Gedeon, A.K. et al. Identification of the gene (SEDL) causing X-linked spondyloepiphyseal dysplasia tarda. Nat. Genet. 22, 400–404 (1999).
Zhang, B. et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat. Genet. 34, 220–225 (2003).
Blixt, O. et al. Efficient chemoenzymatic synthesis of O-linked sialyl oligosaccharides. J. Am. Chem. Soc. 124, 5739–5746 (2002).
Steet, R.A., Melancon, P. & Kuchta, R.D. 3′-Azidothymidine potentially inhibits the biosynthesis of highly branched N-linked oligosaccharides and poly–N-acetyllactosamine chains in cells. J. Biol. Chem. 275, 26812–26820 (2000).
Ory, D.S., Neugeboren, B.A. & Mulligan, R.C. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93, 11400–11406 (1996).
Ju, T., Cummings, R.D. & Canfield, W.M. Purification, characterization, and subunit structure of rat Core1β1,3-galactosyltransferase. J. Biol. Chem. 277, 169–177 (2002).