Mutant glycosyltransferases assist in the development of a targeted drug delivery system and contrast agents for MRI

Springer Science and Business Media LLC - Tập 8 - Trang E190-E195 - 2006
Pradman K. Qasba1, Boopathy Ramakrishnan1,2, Elizabeth Boeggeman1,2
1Structural Glycobiology Section, CCRNP, NCI-Frederick, Frederick
2Basic Research Program, SAIC-Frederick Inc, Frederick

Tóm tắt

The availability of structural information on glycosyltransferases is beginning to make structure-based reengineering of these enzymes possible. Mutant glycosyltransferases have been generated that can transfer a sugar residue with a chemically reactive unique functional group to a sugar moiety of glycoproteins, glycolipids, and proteoglycans (glyco-conjugates). The presence of modified sugar moiety on a glycoprotein makes it possible to link bioactive molecules via modified glycan chains, thereby assisting in the assembly of bionanoparticles that are useful for developing the targeted drug delivery system and contrast agents for magnetic resonance imaging. The reengineered recombinant glycosyltransferases also make it possible to (1) remodel the oligosaccharide chains of glycoprotein drugs, and (2) synthesize oligosaccharides for vaccine development.

Tài liệu tham khảo

Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis.Physiol Rev. 1997;77:759–803. Gao H, Shi W, Freund LB. Mechanics of receptor-mediated endocytosis.Proc Natl Acad Sci USA. 2005;102:9469–9474. Bao G, Bao XR. Shedding light on the dynamics of endocytosis and viral budding.Proc Natl Acad Sci USA. 2005;102:9997–9998. Vyas SP, Singh A, Sihorkar V. Ligand-receptor-mediated drug delivery: an emerging paradigm in cellular drug targeting.Crit Rev Ther Drug Carrier Syst. 2001;18:1–76. Russell-Jones GJ. The potential use of receptor-mediated endocytosis for oral drug delivery.Adv Drug Deliv Rev. 2001;46:59–73. Qasba PK. Involvement of sugars in protein-protein interactions.Carbohydrate Polymers. 2000;41:293–309. Bourne Y, Bolgiano B, Liao DI, et al. Crosslinking of mammalian lectin (galectin-1) by complex bi-antennary saccharides.Nat Struct Biol. 1994;1:863–870. Bourne Y, Roussel A, Frey M, Rouge P, Fontecilla-Camps JC, Cambillau C. Three-dimensional structures of complexes of Lathyrus ochrus isolectin. I with glucose and mannose: fine specificity of the monosaccharide-binding site.Proteins. 1990;8:365–376. Wright CS. Crystal structure of a wheat germ agglutinin/glycophorin-sialoglycopeptide receptor complex: structural basis for cooperative lectin-cell binding.J Biol Chem. 1992;267:14345–14352. Crocker PR, Feizi T. Carbohydrate recognition systems: functional triads in cell-cell interactions.Curr Opin Struct Biol. 1996;6:679–691. Collins BE, Paulson JC. Cell surface biology mediated by low affinity multivalent protein-glycan interactions.Curr Opin Chem Biol. 2004;8:617–625. Akama TO, Nakagawa H, Sugihara K, et al. Germ cell survival through carbohydrate-mediated interaction with Sertoli cells.Science. 2002;295:124–127. Talbot P, Shur BD, Myles DG. Cell adhesion and fertilization: steps in oocyte transport, sperm-zona pellucida interactions, and sperm-egg fusion.Biol Reprod. 2003;68:1–9. Sharon N, Ofek I. Fighting infectious diseases with inhibitors of microbial adhesion to host tissues.Crit Rev Food Sci Nutr. 2002;42:267–272. Sharon N. Carbohydrate-lectin interactions in infectious disease.Adv Exp Med Biol. 1996;408:1–8. Sacks D, Kamhawi S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis.Annu Rev Microbiol. 2001;55:453–483. Rudd PM, Wormald MR, Stanfield RL, et al. Roles of glycosylation of cell surface receptors involved in cellular immune recognition.J Mol Biol. 1999;293:351–366. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA. Glycosylation and the immune system.Science. 2001;291:2370–2376. Lowe JB. Glycan-dependent leukocyte adhesion and recruitment in inflammation.Curr Opin Cell Biol. 2003;15:531–538. Parodi AJ. Role of N-oligosaccharide endoplasmic reticulum processing reactions in glycoprotein folding and degradation.Biochem J. 2000;348:1–13. Trombetta ES, Helenius A. Lectins as chaperones in glycoprotein folding.Curr Opin Struct Biol. 1998;8:587–592. Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale.Nat Rev Mol Cell Biol. 2003;4:202–212. Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules.Glycobiology. 2004;14:53R-62R. Yang RY, Liu FT. Galectins in cell growth and apoptosis.Cell Mol Life Sci. 2003;60:267–276. Liu F, Patterson RJ, Wang JL. Intracellular functions of galectins.Biochim Biophys Acta. 2002;1572:263–273. Handel TM, Johnson Z, Crown SE, Lau EK, Sweeney M, Proudfoot AE. Regulation of protein function by glycosaminoglyacans—as exemplified by chemokines.Annu Rev Biochem. 2005;74:385–410. Schlessinger J, Lax I, Lemmon M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors?.Cell. 1995;83:357–360. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor.Cell. 1991;64:841–848. Herr AB, Ornitz DM, Sasisekharan R, Venkataraman G, Waksman G. Heparin-induced self-association of fibroblast growth factor-2: evidence for 2 oligomerization processes.J Biol Chem. 1997;272:16382–16389. Lam K, Rao VSR, Qasba PK. Molecular modeling studies on binding of bFGF to heparin and its receptor FGFR1.J Biomol Struct Dyn. 1998;15:1009–1027. Morell AG, Gregoriadis G, Scheinberg H, Hickman J, Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation.J Biol Chem. 1971;246:1461–1467. Rogers JC, Kornfeld S. Hepatic uptake of proteins coupled to fetuin glycopeptide.Biochem Biophys Res Commun. 1971;45:622–629. Lee YC, Townsend RR, Hardy MR, et al. Binding of synthetic oligosaccharides to the hepatic Gal/GalNAc lectin: dependence on fine structural features.J Biol Chem. 1983;258:199–202. Hangeland JJ, Levis JT, Lee YC, Tso POP. Cell-type specific and ligand specific enhancement of cellular uptake of oligodeoxynucleoside methylphosphonates covalently linked with a neoglycopeptide, YEE(ah-GalNAc).Bioconjug Chem. 1995;6:695–701. Weigel PH, Yik JH. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors.Biochim Biophys Acta. 2002;1572:341–363. Roseman S. Reflections on glycobiology.J Biol Chem. 2001;276:41527–41542. Amado M, Almeida R, Schwientek T, Clausen H. Identification and characterization of large galactosyltransferase gene families: galactosyltransferases for all functions.Biochim Biophys Acta. 1999;1473:35–53. Hennet T. The galactosyltransferase family.Cell Mol Life Sci. 2002;59:1081–1095. Berger EG, Rohrer J. Galactosyltransferase: still up and running.Biochimie. 2003;85:261–274. Javaud C, Dupuy F, Maftah A, Julien R, Petit JM. The fucosyltransferase gene family: an amazing summary of the underlying mechanisms of gene evolution.Genetica. 2003;118:157–170. Harduin-Lepers A, Vallejo-Ruiz V, Krzewinski-Recchi MA, Samyn-Petit B, Julien S, Delannoy P. The human sialyltransferase family.Biochimie. 2001;83:727–737. Ten Hagen KG, Fritz TA, Tabak LA. All in the family: the UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferases.Glycobiology. 2003;13:1R-16R. Wilson IB. The never-ending story of peptide O-xylosyltransferase.Cell Mol Life Sci. 2004;61:794–809. Palcic MM, Seto NO, Hindsgaul O. Natural and recombinant A and B gene encoded glycosyltransferases.Transfus Med. 2001;11:315–323. Shur BD, Evans S, Lu Q. Cell surface galactosyltransferase: current issues.Glycoconj J. 1998;15:537–548. Rodeheffer C, Shur BD. Targeted mutations in β 1,4-galactosyltransferase I reveal its multiple cellular functions.Biochim Biophys Acta. 2002;1573:258–270. Haltiwanger RS, Stanley P. Modulation of receptor signaling by glycosylation: fringe is an O-fucose-beta,3-N-acetylglucosam inyltransferase.Biochim Biophys Acta. 2002;1573:328–335. Nakamura Y, Haines N, Chen J, et al. Identification of a Drosophila gene encoding xylosylprotein beta4-galactosyltransferase that is essential for the synthesis of glycosaminoglycans and for morphogenesis.J Biol Chem. 2002;277:46280–46288. Takahashi M, Tsuda T, Ikeda Y, Honke K, Taniguchi N. Role of N-glycans in growth factor signaling.Glycoconj J. 2004;20:207–212. Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens.Nature. 1985;314:53–57. Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle.Proc Natl Acad Sci USA. 2002;99:10231–10233. Couldrey C, Green JE. Metastases: the glycan connection.Breast Cancer Res. 2000;2:321–323. Freeze HH, Aebi M. Altered glycan structures: the molecular basis of congenital disorders of glycosylation.Curr Opin Struct Biol. 2005;15:490–498. Bourne Y, Henrissat B. Glycoside hydrolases and glycosyltransferases: families and functional modules.Curr Opin Struct Biol. 2001;11:593–600. Qasba PK, Ramakrishnan B, Boeggeman E. Substrate-induced conformational changes in glycosyltransferases.Trends Biochem Sci. 2005;30:53–62. Ramakrishnan B, Boeggeman E, Ramasamy V, Qasba PK. Structure and catalytic cycle beta-1,4-galactosyltransferase.Curr Opin Struct Biol. 2004;14:593–600. Ramakrishnan B, Qasba PK. Structure-based design of beta-1,4-galactosyl-transferase-I (beta 4Gal-T1) with equally efficient N-acetylgalactosaminyltransferase activity.J Biol Chem. 2002;277: 20833–20840. Pedersen LC, Darden TA, Negishi M. Crystal structure of beta 1,3-glucuronyltransferase I in complex with active donor substrate UDP-GlcUA.J Biol Chem. 2002;277:21869–21873. Kakuda S, Shiba T, Ishiguro M, et al. Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1.J Biol Chem. 2004;279:22693–22703. Ouzzine M, Gulberti S, Levoin N, Netter P, Magdalon J, Fournel-Gigleux S. The donor substrate specificity of the human beta 1,3-glucuronosyltransferase I toward UDP-glucuronic acid is determined by two crucial histidine and arginine residues.J Biol Chem. 2002;277:25439–25445. Marcus SL, Polakowski R, Seto NO, et al. A single point mutation reverses the donor specificity of human blood group B-synthesizing galactosyltransferase.J Biol Chem. 2003;278:12403–12405. Ramakrishnan B, Boeggeman E, Qasba PK. Mutation of Arg 228 to lysine enhances the glucosyltransferase activity of bovine beta-1,4-galactosyltransferase I.Biochemistry. 2005;44:3202–3210. Khidekel N, Arndt S, Lamarre-Vincent N, et al. A chemoenzymatic approach toward the rapid and sensitive detection ofO-glcNAc posttranslational modifications.J Am Chem Soc. 2003;125:16162–16163. Mizanur RM, Jaipuri FA, Pohl NL. One-step synthesis of labeled sugar nucleotides for proteinO-GlcNAc modification studies by chemical function analysis of an archaeal protein.J Am Chem Soc. 2005;127:836–837.