MuscleJ: a high-content analysis method to study skeletal muscle with a new Fiji tool

Alicia Mayeuf-Louchart1, David Hardy2, Quentin Thorel1, Pierre Roux3, Lorna Guéniot2, David Briand2, Aurélien Mazeraud2, Adrien Bouglé2, Spencer Shorte3, Bart Staels1, Hélène Duez1, Anne Danckært3
1Inserm, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
2Experimental Neuropathology Unit, Infection and Epidemiology Department, Institut Pasteur, Paris, France
3UTechS PBI (Imagopole)–Citech, Institut Pasteur, Paris, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Buckingham M, Mayeuf A. Skeletal muscle development. In: Hill JA, Olson EN, editors. Muscle: fundamental biology and mechanisms of disease. Boston: Academic Press; 2012. p. 749-62.

Montarras D, L’honoré A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J. 2013;280:4036–50.

Schiaffino S. Fibre types in skeletal muscle: a personal account. Acta Physiol Oxf Engl. 2010;199:451–63.

Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype. Compr Physiol. 2013;3:1645–87.

Gutiérrez JM, Ownby CL, Odell GV. Skeletal muscle regeneration after myonecrosis induced by crude venom and a myotoxin from the snake Bothrops asper (Fer-de-Lance). Toxicon Off J Int Soc Toxinol. 1984;22:719–31.

Bergmeister KD, Gröger M, Aman M, Willensdorfer A, Manzano-Szalai K, Salminger S, et al. A rapid automated protocol for muscle fiber population analysis in rat muscle cross sections using myosin heavy chain immunohistochemistry. J Vis Exp JoVE. 2017; https://doi.org/10.3791/55441 .

Wen Y, Murach KA, Vechetti IJ, Fry CS, Vickery CD, Peterson CA, et al. MyoVision: software for automated high-content analysis of skeletal muscle immunohistochemistry. J Appl Physiol Bethesda Md 1985. 2017; jap.00762.2017

Smith LR, Barton ER. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application. Skelet Muscle. 2014;4:21.

Kostrominova TY, Reiner DS, Haas RH, Ingermanson R, McDonough PM. Automated methods for the analysis of skeletal muscle fiber size and metabolic type. Int Rev Cell Mol Biol. 2013;306:275–332.

Sertel O, Dogdas B, Chiu CS, Gurcan MN. Microscopic image analysis for quantitative characterization of muscle fiber type composition. Comput Med Imaging Graph Off J Comput Med Imaging Soc. 2011;35:616–28.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676–82.

Roman W, Gomes ER. Nuclear positioning in skeletal muscle. Semin Cell Dev Biol. 2017; https://doi.org/10.1016/j.semcdb.2017.11.005 .

Jungbluth H, Gautel M. Pathogenic mechanisms in centronuclear myopathies. Front Aging Neurosci. 2014;6:339.

Folker ES, Baylies MK. Nuclear positioning in muscle development and disease. Front Physiol. 2013;4:363.

Latroche C, Weiss-Gayet M, Muller L, Gitiaux C, Leblanc P, Liot S, et al. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Rep. 2017;9:2018–33.

Hardy D, Besnard A, Latil M, Jouvion G, Briand D, Thépenier C, et al. Comparative study of injury models for studying muscle regeneration in mice. PLoS One. 2016;11:e0147198.

Gayraud-Morel B, Chrétien F, Flamant P, Gomès D, Zammit PS, Tajbakhsh S. A role for the myogenic determination gene Myf5 in adult regenerative myogenesis. Dev Biol. 2007;312:13–28.