Multivariate statistical monitoring of process operating performance

Canadian Journal of Chemical Engineering - Tập 69 Số 1 - Trang 35-47 - 1991
J.V. Kresta1, John F. MacGregor1, Thomas E. Marlin1
1Chemical Engineering Department, McMaster University, Hamilton, Ontario L8S 4L7

Tóm tắt

AbstractProcess computers routinely collect hundreds to thousands of pieces of data from a multitude of plant sensors every few seconds. This has caused a “data overload” and due to the lack of appropriate analyses very little is currently being done to utilize this wealth of information. Operating personnel typically use only a few variables to monitor the plant's performance. However, multivariate statistical methods such as PLS (Partial Least Squares or Projection to Latent Structures) and PCA (Principal Component Analysis) are capable of compressing the information down into low dimensional spaces which retain most of the information. Using this method of statistical data compression a multivariate monitoring procedure analogous to the univariate Shewart Chart has been developed to efficiently monitor the performance of large processes, and to rapidly detect and identify important process changes. This procedure is demonstrated using simulations of two processes, a fluidized bed reactor and an extractive distillation column.

Từ khóa


Tài liệu tham khảo

Anderson T. W., 1984, Introduction to Multivariate Statistical Analysis

10.1021/ac00144a725

Box G. E. P., 1978, Statistics of Experimenters

Chatfield C., 1986, Introduction to Multivariate Analysis

Chin A. Private Communication Department of Chemical Engineering McMaster University (1989).

Denney D. W. J. McKay T.MacHattie C.FloraandE.Mastracci “Application of Pattern Recognition Techniques to Process Unit Data Presented at CSChE Conference Sarnia Ont. Oct. (1985).

Draper N. R., 1981, Applied Regression Analysis

10.1016/0003-2670(86)80028-9

10.1016/0003-2670(86)80029-0

10.1002/cem.1180020403

10.1080/03610918808812681

10.1080/00401706.1970.10488634

10.1007/BF02289710

10.1002/cem.1180020306

10.1080/00224065.1986.11979014

10.1080/00224065.1980.11980967

10.1080/00401706.1979.10489779

Kelly J. Private Communication Department of Chemical Engineering McMaster University (1989).

Kresta J. T. E. MarlinandJ. F.MacGregor “Choosing Inferential Variables Using Projection to Latent Structures (PLS) with Application to Multicomponent Distillation” Presented at Annual AIChE Meeting Chicago IL. Nov. (1990).

10.1016/0169-7439(88)80049-2

10.1002/cem.1180010105

10.1016/0169-7439(87)80096-5

Mardia K. V., 1982, Multivariate Analysis

10.1016/0269-7491(88)90043-7

10.1080/03610918508812458

10.1021/ac00279a020

10.1080/14786440109462720

10.1002/cjce.5450500514

Shewart W. A., 1931, Economic Control of Quality of Manufactured Product

10.1080/01621459.1980.10477428

Wise B. M., 1989, Feedback Strategies in Multiple Sensor Systems, AIChE Symp. Ser., 85, 19

Wise B. M. N. L. RickerandD. J.Veltkamp “Upset and Sensor Detection in Multivariate Process” paper 164b AIChE Annual Meeting San Francisco CA. Nov. (1989).

Wold H., 1982, Systems Under Indirect Observation

10.1080/00401706.1978.10489693

10.1007/978-94-017-1026-8_2

10.1137/0905052

Wold S., 1987, PLS Modelling with Latent Variables in two or more Dimensions

10.1016/0169-7439(87)80084-9

10.1016/0169-7439(89)80111-X

Woodhall W. H., 1985, Multivariate CUSUM Quality‐Control Procedures, Technometrics, 27, 285, 10.1080/00401706.1985.10488053

Woodward R. H., 1964, Cumulative Sum Techniques