Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô hình đa quy mô trong lâm sàng: bệnh của não bộ và hệ thần kinh
Tóm tắt
Khoa học thần kinh tính toán là một lĩnh vực có nguồn gốc từ những nỗ lực của Hodgkin và Huxley, những người tiên phong trong phân tích định lượng hoạt động điện trong hệ thần kinh. Mặc dù vẫn tiếp tục tồn tại như một lĩnh vực độc lập, khoa học thần kinh tính toán đã kết hợp với sinh học hệ thống tính toán, và mô hình đa quy mô thần kinh đã phát triển như một nhánh. Sự hợp nhất này đã bổ sung các góc nhìn về điện, đồ họa, hệ thống động lực học, lý thuyết học tập, trí tuệ nhân tạo và mạng nơ-ron với quy mô vi mô của sinh học tế bào (nơ-ron và tế bào glia), quy mô meso của mạng lưới mạch máu, miễn dịch và nơ-ron, cho đến quy mô vĩ mô của nhận thức và hành vi. Sự phức tạp của các liên kết tạo ra bệnh lý học trong các bệnh thần kinh, phẫu thuật thần kinh và tâm thần sẽ yêu cầu mô hình đa quy mô để cung cấp sự hiểu biết vượt qua những gì có thể đạt được bằng phân tích thống kê hoặc các mô hình đơn giản hóa cao: làm thế nào để kết hợp liệu pháp dược lý với kích thích thần kinh, làm thế nào để cá nhân hóa các liệu pháp, làm thế nào để kết hợp các liệu pháp mới với phục hồi chức năng thần kinh, làm thế nào để kết hợp các cập nhật chẩn đoán định kỳ với việc đánh giá lại liệu pháp thường xuyên, làm thế nào để hiểu một căn bệnh thể chất thể hiện như một căn bệnh của tâm trí. Mô hình đa quy mô cũng sẽ giúp mở rộng sự hữu ích của các mô hình động vật trong nghiên cứu bệnh lý con người trong khoa học thần kinh, nơi mà sự không kết nối giữa hiện tượng học lâm sàng và động vật rất rõ ràng. Tại đây, chúng tôi đề cập đến các lĩnh vực đặc biệt quan tâm cho ứng dụng lâm sàng của những công nghệ mô hình mới này, bao gồm động kinh, chấn thương não do va chạm, bệnh thiếu máu cục bộ, phục hồi chức năng thần kinh, nghiện thuốc, tâm thần phân liệt và kích thích thần kinh.
Từ khóa
#mô hình đa quy mô #khoa học thần kinh tính toán #bệnh hệ thần kinh #động kinh #chấn thương não #phục hồi chức năng thần kinh #tâm thần phân liệtTài liệu tham khảo
Blackwell K (2013) Calcium: the answer to life, the universe, and everything. In: Proceedings of the 20 years of computational neuroscience. Springer series in computational neuroscience. Springer, New York, pp 141–158
Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 316:344–366
Lytton WW (2008) Computer modelling of epilepsy. Nat Rev Neurosci 9(8):626–637
Traub RD, Wong RK (1982) Cellular mechanism of neuronal synchronization in epilepsy. Science 216(4547):745–747
Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79(4):1317–1372
Lerche H, Shah M, Beck H, Noebels J, Johnston D, Vincent A (2013) Ion channels in genetic and acquired forms of epilepsy. J Physiol 591(Pt 4):753–764
Minor DL Jr (2007) The neurobiologist’s guide to structural biology: a primer on why macromolecular structure matters and how to evaluate structural data. Neuron 54(4):511–533
Klassen T (2015) Epilepsy: abnormal ion channels. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, New York, pp 1119–1121
Thomas EA, Reid CA, Berkovic SF, Petrou S (2009) Prediction by modeling that epilepsy may be caused by very small functional changes in ion channels. Arch Neurol 66(10):1225–1232
Sun FT, Morrell MJ (2014) The RNS system: responsive cortical stimulation for the treatment of refractory partial epilepsy. Exp Rev Med Devices 11(6):563–572
RamRakhyani AK, Kagan ZB, Warren DJ, Normann RA, Lazzi G (2015) A \(\mu\)m-scale computational model of magnetic neural stimulation in multifascicular peripheral nerves. IEEE Trans Biomed Eng 62(12):2837–2849
Giordano C, Kleiven S (2014) Evaluation of axonal strain as a predictor for mild traumatic brain injuries using finite element modeling. Stapp Car Crash J 58:29–61
Hernandez F, Wu LC, Yip MC, Laksari K, Hoffman AR, Lopez JR, Grant GA, Kleiven S, Camarillo DB (2015) Six degree-of-freedom measurements of human mild traumatic brain injury. Ann Biomed Eng 43(8):1918–1934
Kimpara H, Iwamoto M (2012) Mild traumatic brain injury predictors based on angular accelerations during impacts. Ann Biomed Eng 40(1):114–126
King AI, Yang KH , Zhang L, Hardy W, Viano DC (2003) Is head injury caused by linear or angular acceleration. In: IRCOBI conference, 2003, pp 1–12
Meaney DF, Morrison B, Bass CD (2014) The mechanics of traumatic brain injury: a review of what we know and what we need to know for reducing its societal burden. J Biomech Eng 136(2):021008
Yang KH, Mao H, Wagner C, Zhu F, Chou CC, King AI (2011) Modeling of the brain for injury prevention. In: Neural tissue biomechanics, studies in mechanobiology, tissue engineering and biomaterials. Springer, Berlin, pp 69–120
Ji S, Ghadyani H, Bolander RP, Beckwith JG, Ford JC, McAllister TW, Flashman LA, Paulsen KD, Ernstrom K, Jain S, Raman R, Zhang L, Greenwald RM (2014) Parametric comparisons of intracranial mechanical responses from three validated finite element models of the human head. Ann Biomed Eng 42(1):11–24
Chatelin S, Constantinesco A, Willinger R (2010) Fifty years of brain tissue mechanical testing: from in vitro to in vivo investigations. Biorheology 47(5–6):255–276
Colgan NC, Gilchrist MD, Curran. KM (2010) Applying DTI white matter orientations to finite element head models to examine diffuse TBI under high rotational accelerations. Prog Biophys Mol Biol 103(2–3):304–309
van Dommelen JAW, van der Sande TPJ, Hrapko M, Peters GWM (2010) Mechanical properties of brain tissue by indentation: interregional variation. J Mech Behav Biomed Mater 3(2):158–166
Carlsen RW, Daphalapurkar NP (2015) The importance of structural anisotropy in computational models of traumatic brain injury. Front Neurol 6:28
Chatelin S, Deck C, Renard F, Kremer S, Heinrich C, Armspach JP, Willinger R (2011) Computation of axonal elongation in head trauma finite element simulation. J Mech Behav Biomed Mater 4(8):1905–1919
Cloots RJH, van Dommelen JAW, Nyberg T, Kleiven S, Geers MGD (2011) Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy. Biomech Model Mechanobiol 10(3):413–422
Ji S, Zhao W, Ford JC, Beckwith JG, Bolander RP, Greenwald RM, Flashman LA, Paulsen KD, McAllister TW (2015) Group-wise evaluation and comparison of white matter fiber strain and maximum principal strain in sports-related concussion. J Neurotrauma 32(7):441–454
Wright RM, Post A, Hoshizaki B, Ramesh KT (2013) A multiscale computational approach to estimating axonal damage under inertial loading of the head. J Neurotrauma 30(2):102–118
Wright RM, Ramesh KT (2012) An axonal strain injury criterion for traumatic brain injury. Biomech Model Mechanobiol 11(1–2):245–260
Zhao W, Ford JC, Flashman LA, McAllister T, Ji S (2016) White matter injury susceptibility via fiber strain evaluation using whole-brain tractography. J Neurotrauma 33(20):1834–1847
Kraft RH, McKee PJ, Dagro AM, Grafton ST (2012) Combining the finite element method with structural connectome-based analysis for modeling neurotrauma: connectome neurotrauma mechanics. PLoS Comput Biol 8(8):e1002619
Morrison III B, Cullen DK, LaPlaca M (2011) In vitro models for biomechanical studies of neural tissues. In: Bilston LE (ed) Neural tissue biomechanics, vol 3. Springer, Berlin, pp 247–285
Ahmadzadeh H, Smith DH, Shenoy VB (2014) Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model. Biophys J 106(5):1123–1133
Cloots RJH, van Dommelen JAW, Geers MGD (2012) A tissue-level anisotropic criterion for brain injury based on microstructural axonal deformation. J Mech Behav Biomed Mater 5(1):41–52
Fussenegger M, Bailey JE, Varner J (2000) A mathematical model of caspase function in apoptosis. Nat Biotechnol 18(7):768–774
Heuett WJ, Periwal V (2010) Autoregulation of free radicals via uncoupling protein control in pancreatic beta-cell mitochondria. Biophys J 98(2):207–217
Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets 12(5):698–714
Seidenstein A, Barone F, Lytton W (2015) Computer modeling of ischemic stroke. Scholarpedia J 10(3):32015
Taxin ZH, Neymotin SA, Mohan A, Lipton P, Lytton WW (2014) Modeling molecular pathways of neuronal ischemia. Prog Mol Biol Transl Sci 123:249–275
Puyal J, Ginet V, Clarke PGH (2013) Multiple interacting cell death mechanisms in the mediation of excitotoxicity and ischemic brain damage: a challenge for neuroprotection. Prog Neurobiol 105:24–48
Velier JJ, Ellison JA, Kikly KK, Spera PA, Barone FC, Feuerstein GZ (1999) Caspase-8 and caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci 19(14):5932–5941
Marmarelis VZ, Shin DC, Orme ME, Zhang R (2013) Model-based quantification of cerebral hemodynamics as a physiomarker for Alzheimer’s disease? Ann Biomed Eng 41(11):2296–2317
Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243
Filosa JA, Bonev AD, Nelson MT (2004) Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling. Circ Res 95(10):e73–81
Mulligan SJ, MacVicar BA (2004) Calcium transients in astrocyte endfeet cause cerebrovascular constrictions. Nature 431(7005):195–199
Marmarelis VZ, Shin DC, Orme ME, Zhang R (2014) Model-based physiomarkers of cerebral hemodynamics in patients with mild cognitive impairment. Med Eng Phys 36(5):628–637
Iadecola C (2003) Cerebrovascular effects of amyloid-beta peptides: mechanisms and implications for Alzheimer’s dementia. Cell Mol Neurobiol 23(4–5):681–689
Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5(5):347–360
Muoio V, Persson PB, Sendeski MM (2014) The neurovascular unit-concept review. Acta Physiol 210(4):790–798
Witthoft A, Karniadakis G (2012) A bidirectional model for communication in the neurovascular unit. J Theor Biol 311:80–93
Sanger TD (2004) Failure of motor learning for large initial errors. Neural Comput 16(9):1873–1886
Duffau H (2006) Brain plasticity: from pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 13(9):885–897
Buonomano DV, Merzenich MM (1998) Cortical plasticity: from synapses to maps. Annu Rev Neurosci 21:149–186
Nudo RJ (2003) Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabil Med 41:7–10
Schmidt RA (1988) Motor control and learning: a behavioral emphasis, 2nd edn. Human kinetics, Champaign
Sanchez J, Lytton W, Carmena J, Principe J, Fortes J, Barbour R, Francis J (2012) Dynamically repairing and replacing neural networks: using hybrid computational and biological tools. IEEE Pulse 3(1):57–59
Hoffer L, Bobashev G, Morris RJ (2012) Simulating patterns of heroin addiction within the social context of a local heroin market. In: Computational neuroscience of drug addiction. Springer series in computational neuroscience. Springer, New York, pp 313–331
Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238
Ahmed SH, Bobashev G, Gutkin BS (2007) The simulation of addiction: pharmacological and neurocomputational models of drug self-administration. Drug Alcohol Depend 90(2–3):304–311
Bobashev G, Costenbader E, Gutkin B (2007) Comprehensive mathematical modeling in drug addiction sciences. Drug Alcohol Depend 89(1):102–106
Welberg L (2011) Addiction: from mechanisms to treatment. Nat Rev Neurosci 12(11):621
Lamy F, Bossomaier T, Perez P (2015) An ontologic agent-based model of recreational polydrug use: SimUse. Int J Simul Process Model 10(3):207–222
Levy YZ, Levy DJ, Barto AG, Meyer. JS (2013) A computational hypothesis for allostasis: delineation of substance dependence, conventional therapies, and alternative treatments. Front. Psychiatry 4:167
Newlin DB, Regalia PA, Seidman TI, Bobashev G (2012) Control theory and addictive behavior. In: Computational neuroscience of drug addiction, Springer series in computational neuroscience. Springer, New York, pp 57–108
Redish AD, Jensen S, Johnson A (2008) A unified framework for addiction: vulnerabilities in the decision process. Behav Brain Sci 31(4):415–437 (discussion 437–87, 2008)
Gutkin B, Ahmed SH (eds) (2012) Computational neuroscience of drug addiction: Springer series in computational neuroscience. Springer, New York
Keramati M, Durand A, Girardeau P, Gutkin B, Ahmed S (2015) An integrated homeostatic reinforcement learning theory of motivation explains the transition to cocaine addiction. bioRxiv. doi:10.1101/029256
Lisman J (2012) Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol 22(3):537–544
Lisman JE, Pi HJ, Zhang Y, Otmakhova NA (2010) A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol Psychiatry 68(1):17–24
Phillips WA, Silverstein SM (2003) Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26(1):65–82 (discussion 82–137, 2003)
Fenton AA (2015) Excitation-inhibition discoordination in rodent models of mental disorders. Biol Psychiatry 77(12):1079–1088
Uhlhaas PJ, Silverstein SM (2005) Perceptual organization in schizophrenia spectrum disorders: empirical research and theoretical implications. Psychol Bull 131(4):618–632
Jensen O, Kaiser J, Lachaux JP (2007) Human gamma-frequency oscillations associated with attention and memory. Trends Neurosci 30(7):317–324
Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. J Neurosci 31(32):11733–11743
Neymotin SA, Jacobs KM, Fenton AA, Lytton WW (2011) Synaptic information transfer in computer models of neocortical columns. J Comput Neurosci 30(1):69–84
Chang SY, Kimble CJ, Kim I, Paek SB, Kressin KR, Boesche JB, Whitlock SV, Eaker DR, Kasasbeh A, Horne AE, Blaha CD, Bennet KE, Lee. KH (2013) Development of the mayo investigational neuromodulation control system: toward a closed-loop electrochemical feedback system for deep brain stimulation. J Neurosurg 119(6):1556–1565
Howell B, Naik S, Grill WM (2014) Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation. IEEE Trans Biomed Eng 61(2):297–307
Shils JL, Mei LZ, Arle JE (2008) Modeling parkinsonian circuitry and the DBS electrode. II. Evaluation of a computer simulation model of the basal ganglia with and without subthalamic nucleus stimulation. Stereotact Funct Neurosurg 86(1):16–29
Chaturvedi A, Luján JL, McIntyre CC (2013) Artificial neural network based characterization of the volume of tissue activated during deep brain stimulation. J Neural Eng 10(5):056023
Arle JE, Carlson KW, Mei L, Iftimia N, Shils JL (2014) Mechanism of dorsal column stimulation to treat neuropathic but not nociceptive pain: analysis with a computational model. Neuromodulation 17(7):642–655 (discussion 655, October 2014)
Arle JE, Shils JL (2008) Motor cortex stimulation for pain and movement disorders. Neurotherapeutics 5(1):37–49
McDougal R, Bulanova A, Lytton W (2016) Reproducibility in computational neuroscience models and simulations. IEEE Trans Biomed Eng 63(10):2021–2035