Mô hình đa quy mô để dự đoán cấu trúc và độ thẩm thấu của vùng cắt trong đá biến dạng

Springer Science and Business Media LLC - Tập 3 - Trang 179-199 - 2015
Paul W. Cleary1, Gerald G. Pereira1, Vincent Lemiale1, Claudio Delle Piane2, M. Ben Clennell2
1CSIRO, Clayton South, Australia
2CSIRO, Kensington, Australia

Tóm tắt

Một mô hình đa quy mô mới được đề xuất cho sự tiến triển của các đứt gãy trong đá, dự đoán các thuộc tính nội tại và độ thẩm thấu của chúng khi ứng suất gia tăng. Mô hình quy mô lớn, dựa trên động lực học hạt mượt (SPH), dự đoán sự biến dạng của hệ thống dựa trên một đại diện đàn hồi-plastics tư vấn phụ thuộc vào áp suất của đá và vùng cắt. Vì là một phương pháp liên tục, SPH không chứa thông tin nội tại về cấu trúc hoặc hành vi của vùng cắt ở quy mô hạt, do đó một loạt các mô hình ô vi (microscale) sử dụng phương pháp phần tử rời rạc được tích hợp vào mô hình quy mô lớn tại những vị trí cụ thể. Trong ví dụ được sử dụng ở đây, hình học tổng thể và động học của một thử nghiệm cắt trực tiếp trên một khối đá nguyên vẹn được mô phỏng. Biến dạng được áp đặt bởi một mô hình quy mô lớn, nơi mà ứng suất và tỷ lệ dịch chuyển được áp dụng tại các bức tường của ô cắt tiếp xúc với đá. Vì các mô hình ô vi bên trong khối đá đang biến dạng ở quy mô lớn giờ đây bao gồm các đại diện của các hạt, cấu trúc của vùng cắt, sự phát triển về kích thước và phân bố hình dạng của các hạt này, cũng như độ giãn nở của vùng cắt đều có thể được dự đoán. Độ giãn nở ở quy mô ô vi có thể được sử dụng để thay đổi độ giãn nở của mô hình quy mô lớn cả về không gian và thời gian, tạo ra một kết nối hai chiều hoàn chỉnh giữa các quy mô không gian. Khả năng của mô hình này trong việc dự đoán cấu trúc vùng cắt sau đó cho phép dự đoán độ thẩm thấu của vùng cắt bằng phương pháp Lattice–Boltzmann.

Từ khóa

#đứt gãy #đá #độ thẩm thấu #mô hình đa quy mô #phương pháp phần tử rời rạc #động lực học hạt mượt #độ giãn nở

Tài liệu tham khảo

Abe S, Mair K (2005) Grain fracture in 3D numerical simulations of granular shear. Geophys Res Lett 32:L05303 Ahrenholz B, Tolke J, Lehmann P, Peters A, Kaestner A, Krafczyk M, Durner W (2008) Prediction of capillary hysteresis in a porous material using lattice-Boltzmann methods and comparison to experimental data and a morphological pore network model’. Adv Water Resour 31:1151–1173 Alevizos S, Poulet T, Veveakis E (2014) Thermo-poro-mechanics of chemically active creeping faults. 1: Theory and steady state considerations. J Geophys Res Solid Earth 119:4558–4582 Arns CH, Pinczewski WV, Knackstedt MA, Garboczi EJ (2002) Computation of linear elastic properties from micro-tomographic images: methodology and agreement between theory and experiment. Geophysics 67:1396–1405 Babic M, Shen HH, Shen HT (1990) The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations. J Fluid Mech 219:81–118 Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth-Sci Rev 127:171–192 Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. 1.Small amplitude processes in charges and neutral one component systems. Phys Rev 94:511–525 Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York Blunt MJ, Jackson MD, Piri M, Valvatane PH (2002) Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Adv Water Resour 25:1069–1089 Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int J Numer Anal Met 32:1537–1570 Campbell CS, Brennen CE (1985) Computer simulation of granular shear flows. J Fluid Mech 151:167–188 Campbell CS (1993) Boundary interactions for two-dimensional granular flows. Part 2. Roughened boundaries. J Fluid Mech 247:137–156 Cancelliere A, Chang C, Foti E, Rothman DH, Succi S (1990) The permeability of a random medium: comparison of simulation with theory. Phys Fluids A 2:2085–2088 Cantor D, Estrada N, Azéma E (2015) Split-cell method for grain fragmentation. Comput Geotech 67:150–156 Chen FF, Yang YS (2012) Microstructure-based characterisation of permeability using a random walk model. Model Simul Mater Sci Eng 20:045005 Chen JK, Beraun JE, Jih CJ (2001) A corrective smoothed particle method for transient elastoplastic dynamics. Comput Mech 27:177–187 Chen S, Diemer K, Doolen GD, Eggert K, Fu C, Gutman S, Travis BJ (1991) Lattice gas automata for flow through porous media. Physica D 47:72–84 Cleary PW (2004) Large scale industrial DEM modelling. Eng Comput 21:169–204 Cleary PW, Prakash M, Ha J (2006) Novel applications of smoothed particle hydrodynamics (SPH) in metal forming. J Mater Process Technol 177:41–48 Cleary PW (2008) The effect of particle shape on simple shear flows. Powder Technol 179:144–163 Cleary PW (2009) Industrial particle flow modelling using DEM. Eng Comput 26:698–743 Cleary PW (2010) Elastoplastic deformation during projectile-wall collision. Appl Math Model 34:266–283 Cleary PW, Prakash M, Das R, Ha J (2012) Modelling of metal forging using SPH. Appl Math Model 36:3836–3855 Cleary PW, Morrison RD (2015) Comminution mechanisms, particle shape evolution and collision energy partitioning in tumbling mills, submitted to: Minerals Engineering Coulaud O, Morel P, Caltagirone JP (1988) Numerical modeling of nonlinear effects in laminar flow through a porous medium. J Fluid Mech 190:393–407 Cundall PA, Board M (1988) A microcomputer program for modelling large-strain plasticity problems. In: Swoboda G (ed), Proceedings of the sixth international conference on numerical methods in geomechanics: numerical methods in geomechanics, vol 6, pp 2101–2108 Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Geotechnique 29:47–65 Chai ZH, Shi BC, Lu JH, Guo ZL (2010) Non-Darcy flow in disordered porous media: a lattice Boltzmann study. Comput Fluids 39:2069–2077 Combescure A, Maurel B, Potapov S (2008) Modelling dynamic fracture of thin shells filled with fluid: a fully SPH model. Mec Ind 9:167–174 Das R, Cleary PW (2008) The potential for SPH modelling of solid deformation and fracture. In: Reddy D (ed) IUTAM Proceedings book series volume on: “Theoretical, computational and modelling aspects of inelastic media”. Springer, Capetown, pp 287–296 Das R, Cleary PW (2010) Application of SPH for modelling heat transfer and residual stress generation in arc welding. Mater Sci Forum 654–656:2751–2754 Das R, Cleary PW (2013) A mesh-free approach for fracture modelling of gravity dams under earthquake. Int J Fract 179:9–33 Das R, Cleary PW (2015) Evaluation of the accuracy and stability of the classical SPH method under uniaxial compression. J Sci Comput 64:858–897 Delaney GW, Cleary PW, Morrison RD, Cummins S, Loveday B (2013) Predicting breakage and the evolution of rock size and shape distributions in AG and SAG mills using DEM. Miner Eng 50–51:132–139 Desrues J, Viggiani G (2004) Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry. Int J Numer Anal Methods Geomech 28:279–321 d’Humieres D, Bouzidi M, Lallemand P (2001) Thirteen-velocity three-dimensional lattice Boltzmann model. Phys Rev 63, 066702(1-10) Elbanna AE, Carlson JM (2014) A two-scale model for sheared fault gouge: competition between macroscopic disorder and local viscoplasticity. J Geophys Res Solid Earth 119:4841–4859 Ergun S (1952) Fluid flow through packed columns. Chem Eng Prog 48:89–94 Fand RM, Kim BYK, Lam ACC, Phan RT (1987) Resistance to the flow of fluids through simple and complex porous media whose matrices are composed of randomly packed spheres. J Fluids Eng 109:268–274 Flodin EA, Aydin A, Durlofsky LJ, Yeten B (2001) Representation of fault zone permeability in reservoir flow models. SPE annual technical conference and exhibition, paper number 71617 Giger S, Clennell B, Ciftci B, Clark P, Harbers C, Ricchetti M, Delle Piane C, Freij-Ayoub R, Middleton B, Ter Heege J, Wassing B, Orlic B (2011) Dynamic Fault Seals CSIRO Report No. EP111873, p 219 Ginzburg I, D’Humières D (2003) Multireflection boundary conditions for Lattice Boltzmann models, Phys Rev E, 68:066614(1-30) Gray JP, Monaghan JJ, Swift RP (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190:6641–6662 Gray GG, Morgan JK, Sanz PF (2014) Overview of continuum and particle dynamics methods for mechanical modeling of contractional geologic structures. J Struct Geol 59:19–36 Govendar I, Cleary PW, Mainza A (2013) Comparisons of PEPT derived charge features in wet milling environments with a friction-adjusted DEM model. Chem Eng Sci 97:162–175 Guo Z, Zhao T (2002) Lattice Boltzmann model for incompressible fows through porous media. Phys Rev E 66:036304 Guo Y, Morgan JK (2004) Influence of normal stress and grain shape on granular friction: results of discrete element simulations. J Geophys Res 109:B12305 Harrison SM, Cleary PW (2014) Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH). Eur Food Res Technol 238:185–215 Hazzard JF, Mair K (2003) The importance of the third dimension in granular shear. Geophys Res Lett 30(13):1708 Healy D, Jones RR, Holdsworth RE (2006) Three-dimensional brittle shear fracturing by tensile crack interaction. Nature 439:64–67 Ikari MJ, Saffer DM, Marone C (2009) Frictional and hydrologic properties of clay-rich fault gouge. J Geophys Res 114:B05409 Jeong N (2010) Advanced study about permeability for micro-porous structures using the Lattice Boltzmann method. Transp Porous Media 83:271–288 Jeong N, Choi DH, Lin CL (2006) Prediction of Darcy-Forchheimer drag for micro-porous structures of complex geometry using the lattice Boltzmann method. J Micromech Microeng 16:2240–2250 Karrech A, Regenauer-Lieb K, Poulet T (2011) Continuum damage mechanics for the lithosphere. J Geophys Res B Solid Earth 116:B04205 Karrech A, Schrank C, Freij-Ayoub R, Regenauer-Lieb K (2014) A multi-scaling approach to predict hydraulic damage of poromaterials. Int J Mech Sci 78:1–7 Knipe RJ, Jones G Fisher QJ (1998) Faulting, fault sealing and fluid flow in hydrocarbon reservoirs: an introduction, vol 147. Geological Society, London, Special Publications, pp vii–xxi Kuwahara F, Nakayama A, Koyama H (1994) Numerical modeling of heat and fluid flow in a porous medium. In: Proceedings of the 10th international heat transfer conference, vol.5, pp 309–314 Larson RE, Higdon JJL (1989) A periodic grain consolidation model of porous media. Phys Fluids A 1:38–46 Lee SL, Yang JH (1997) Modeling of Darcy–Forchheimer drag for fluid flow across a bank of circular cylinders. Int J Heat Mass Transf 40:3149–3155 Lemiale V, Mead S, Cleary P (2012) Numerical Modelling of Landslide Events Using a Combination of Continuum and Discrete Methods. In: Ninth international conference on computational fluid dynamics in the minerals and process industries, Melbourne, Australia Lemiale V, Karantgis L, Broadbridge P (2014a) Smoothed Particle Hydrodynamics applied to the modelling of landslides. Appl Mech Mater 553:519–524 Lemiale V, King P, Rudman M, Prakash M, Cleary PW, Jahedi M, Gulizia S (2014b) Temperature and strain rate effects in cold spray investigated by Smoothed Particle Hydrodynamics. Surf Coati Technol 254:121–130 Lieou CKC, Elbanna AE, Carlson JM (2014) Grain fragmentation in sheared granular flow: weakening effects, energy dissipation, and strain localization. Phys Rev E. doi:10.1103/PhysRevE.89.022203 Lin CL, Miller JD, Garcia C (2005) Saturated flow characteristics in column leaching as described by LB simulation. Miner Eng 18:1045–1051 Liu S, Afacan A, Masliyah J (1994) Steady incompressible laminar flow in porous media. Chem Eng Sci 49:3565–3586 Liu J, Pereira GG, Regenauer-Lieb K (2014) From characterisation of pore structures to simulations of pore-scale fluid flow and upscaling of permeability using microtomography: A case study of heterogeneous carbonates. J Geochem Explor 144:84–96 Lubarda V, Mastilovic S, Knap J (1996) Brittle–ductile transition in porous rocks by cap model. J Eng Mech 122(7):633–642 Lyakhovsky V, Sagy A, Boneh Y, Reches Z (2014) Fault wear by damage evolution during steady-state slip. Pure Appl Geophys 171:3143–3157 Lyakhovsky V, Ben Zion Y (2014) A Continuum damage-breakage faulting model and solid-granular transitions. Pure Appl Geophys 171:3099–3123 Ma GW, Wang QS, Yi XW, Wang XJ (2014) A modified SPH method for dynamic failure simulation of heterogeneous material, Math Probl Eng 2014:808359(1-14) Macdonald IF, El-Sayed MS, Mow K, Dullien FAL (1979) Flow through porous media-the Ergun equation revisited. Ind Eng Chem Fundam 18:199–208 Mair K, Abe S (2008) 3D numerical simulations of fault gouge evolution during shear: grain size reduction and strain localization. Earth Planet Sci Lett 274:72–81 Menendez B, Zhu W, Wong T-F (1996) Micromechanics of brittle faulting and cataclastic flow in Berea sandstone. J Struct Geol 18:1–16 Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophy. 30:543–574 Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68:1703–1759 Mora P, Place D (1993) A lattice solid model for the nonlinear dynamics of earthquakes. Int J Mod Phys C 4(06):1059–1074 Morgan JK (1999) Numerical simulations of granular shear zones using the distinct element method: 2. Effects of particle size distribution and interparticle friction on mechanical behavior. J Geophys Res 104:2721–2732 Nakayama A, Kuwahara F, Kawamura Y, Koyama H (1995) Three-dimensional numerical simulation of flow through a microscopic porous structure. Proc ASME/JSME Therm Eng Conf 3:313–318 Narvaez A, Yazdchi K, Luding S, Harting J (2013) From creeping to inertial flow in porous media: a lattice Boltzmann-finite element study. J Stat Mech Theory Exp P02038. doi:10.1088/1742-5468/2013/02/P02038 Ngyuen GD, Einav I (2009) The energetic of cataclasis based on breakage mechanics. Pure Appl Geophys 166:1693–1724 O’Sullivan C (2011) Particle-based discrete element modeling: geomechanics perspective. Int J Geomech 11:449–464 Pan CX, Luo LS, Miller CT (2006) An evaluation of lattice Boltzmann schemes for porous medium flow simulation. Comput Fluids 35:898–909 Pereira GG (1999) Numerical pore-scale modelling of three-phase flow: comparisons between simulations and experiment. Phys Rev E 59:4229–4242 Pereira GG, Dupuy PM, Cleary PW, Delaney GW (2012) Comparison of permeability of model porous media between SPH and LB. Prog Comput Fluid Dyn 12:176–186 Pereira GG, Prakash M, Cleary PW (2011) SPH modelling of fluid flow at the grain level in a porous medium. Appl Math Model 35:1666–1675 Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41:1329–1364 Prakash M, Cleary PW (2015) Modelling highly deformable metal extrusion using SPH. Comput Part Mech 2:19–38 Pramanik R, Deb D (2013) Failure process of brittle rock using smoothed particle hydrodynamics. J Eng Mech 139(11):1551–1565 Pramanik R, Deb D (2015) SPH procedures for modeling intersecting discontinuities in geomaterial. Int J Numer Anal Methods Geomech 39:343–367 Ramsay JG (1980) Shear zone geometry: a review. J Struct Geol 2(1—-2):83–99 Regenauer-Lieb K, Yuen DA (2003) Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal-mechanical approaches. Earth-Sci Rev 63:295–349 Rutquist J (2012) The geomechanics of CO\(_2\) storage in deep sedimentary formations. Geotech Geol Eng 30:525–551 Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford Wibberley C, Yielding G, Di Toro G (2008) Recent advances in the understanding of fault zone internal structure: a review, Geol Soc London, Special Publications 299:5–33 Wilkins JL (1964) Calculation of elastic-plastic flow. In: Alders B et al (eds) Methods of computational physics. Academic Press, New York, pp 211–263 Wong T-F, Baud P (2012) The brittle–ductile transition in porous rock: a review. J Struct Geol 44:25–53 Wong T-F, David C, Zhu W (1997) The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation. J Geophys Res Solid Earth 102(B2):3009–3025