Multipole polarizability of a graded spherical particle

The European Physical Journal B - Tập 48 - Trang 439-444 - 2005
L. Dong1,2, J. P. Huang1,3, K. W. Yu1,4, G. Q. Gu1,5
1Department of Physics, The Chinese University of Hong Kong, Hong Kong, P.R. China
2Biophysics and Statistical Mechanics Group, Laboratory of Computational Engineering, Helsinki University of Technology, HUT, Finland
3Department of Physics, Fudan University, Shanghai, P. R. China
4Institute of Theoretical Physics, The Chinese University of Hong Kong, Hong Kong, P.R. China
5College of Information Science and Technology, East China Normal University, Shanghai, P. R. China

Tóm tắt

We have studied the multipole polarizability of a graded spherical particle in a nonuniform electric field, in which the conductivity can vary radially inside the particle. The main objective of this work is to access the effects of multipole interactions at small interparticle separations, which can be important in non-dilute suspensions of functionally graded materials. The nonuniform electric field arises either from that applied on the particle or from the local field of all other particles. We developed a differential effective multipole moment approximation (DEMMA) to compute the multipole moment of a graded spherical particle in a nonuniform external field. Moreover, we compare the DEMMA results with the exact results of the power-law graded profile and the agreement is excellent. The extension to anisotropic DEMMA will be studied in an Appendix.

Tài liệu tham khảo

M. Yamanouchi, M. Koizumi, T. Hirai, I. Shioda, in Proceedings of the First International Symposium on Functionally Graded Materials, edited by M. Yamanouchi, M. Koizumi, T. Hirai, I. Shioda (Sendi, Japan, 1990) J.B. Holt, M. Koizumi, T. Hirai, Z.A. Munir, Ceramic transaction: functionally graded materials, Vol. 34 (The American Ceramic Society, Westerville, OH, 1993) B. Ilschner, N. Cherradi, Proceedings of the Third International Symposium on Structural and Functionally Graded Materials (Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1994) T. Bollenbach, K. Kruse, P. Pantazis, M. Gonzalez-Gaitan, F. Julicher, Phys. Rev. Lett. 94, 018103 (2005) G.J. Snyder, T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003) D.S. Lin, J.L. Wu, S.Y. Pan, T.C. Chiang, Phys. Rev. Lett. 90, 046102 (2003) B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, J.Z. Tischler, Nature (London) 415, 887 (2002) D.A. Hughes, N. Hansen, Phys. Rev. Lett. 87, 135503 (2001) J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975) G.Q. Gu, K.W. Yu, Acta Physica Sinica 40, 709 (1991) G. Fuhr, P.I. Luzmin, Biophys. J. 50, 789 (1986) W.M. Arnold, U. Zimmermann, Z. Naturforsch. 37c, 908 (1982) K.L. Chan, P.R.C. Gascoyne, F.F. Becker, P. Pethig, Biochim. Biophys. Acta 1349, 182 (1997) G.Q. Gu, K.W. Yu, J. Appl. Phys. 94, 3376 (2003) L. Dong, G.Q. Gu, K.W. Yu, Phys. Rev. B 67, 224205 (2003) L. Dong, M. Karttunen, K.W. Yu, Phys. Rev. E 72, 016613 (2005) H.C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981) R. Rojas, F. Claro, R. Fuchs, Phys. Rev. B 37, 6799 (1988) P.A. Martin, J. Eng. Math. 42, 133 (2002) G.Q. Gu, K.W. Yu, J. Compos. Mater. 39, 127 (2005) E.B. Wei, J.B. Song, J.W. Tian, Phys. Lett. A 319, 401 (2003) K.W. Yu, G.Q. Gu, J.P. Huang, e-print arXiv:cond-mat/0211532 G.W. Milton, The Theory of Composites (Cambridge University Press, Cambridge, 2002), p. 12 K.W. Yu, G.Q. Gu, Phys. Lett. A 345, 448 (2005) J.P. Huang, Mikko Karttunen, K.W. Yu, L. Dong, G.Q. Gu, Phys. Rev. E 69 051402 (2004) J.P. Huang, K.W. Yu, J. Chem. Phys. 121, 7526 (2004) G.Q. Gu, K.W. Yu, P. M. Hui, J. Chem. Phys. 116, 10989 (2002) K.W. Yu, J.T.K. Wan, Comput. Phys. Commun. 129, 177 (2000) J.P. Huang, K.W. Yu, Appl. Phys. Lett. 85, 94 (2004) L. Dong, J.P. Huang, K.W. Yu, G.Q. Gu, J. Appl. Phys. 95, 621 (2004) A.A. Lucas, L. Henrard, P. Lambin, Phys. Rev. B 49, 2888 (1994)