Multipole polarizability of a graded spherical particle
Tóm tắt
We have studied the multipole polarizability of a graded spherical
particle in a nonuniform electric field, in which the conductivity can
vary radially inside the particle.
The main objective of this work is to access the effects of multipole
interactions at small interparticle separations, which can be important
in non-dilute suspensions of functionally graded materials.
The nonuniform electric field arises either from that applied on the
particle or from the local field of all other particles.
We developed a differential effective multipole moment approximation
(DEMMA) to compute the multipole moment of a graded spherical particle
in a nonuniform external field. Moreover, we compare the DEMMA results
with the exact results of the power-law graded profile and the agreement
is excellent. The extension to anisotropic DEMMA will be studied in an
Appendix.
Tài liệu tham khảo
M. Yamanouchi, M. Koizumi, T. Hirai, I. Shioda, in Proceedings of the First International Symposium on Functionally Graded Materials, edited by M. Yamanouchi, M. Koizumi, T. Hirai, I. Shioda (Sendi, Japan, 1990)
J.B. Holt, M. Koizumi, T. Hirai, Z.A. Munir, Ceramic transaction: functionally graded materials, Vol. 34 (The American Ceramic Society, Westerville, OH, 1993)
B. Ilschner, N. Cherradi, Proceedings of the Third International Symposium on Structural and Functionally Graded Materials (Presses Polytechniques et Universitaires Romandes, Lausanne, Switzerland, 1994)
T. Bollenbach, K. Kruse, P. Pantazis, M. Gonzalez-Gaitan, F. Julicher, Phys. Rev. Lett. 94, 018103 (2005)
G.J. Snyder, T.S. Ursell, Phys. Rev. Lett. 91, 148301 (2003)
D.S. Lin, J.L. Wu, S.Y. Pan, T.C. Chiang, Phys. Rev. Lett. 90, 046102 (2003)
B.C. Larson, W. Yang, G.E. Ice, J.D. Budai, J.Z. Tischler, Nature (London) 415, 887 (2002)
D.A. Hughes, N. Hansen, Phys. Rev. Lett. 87, 135503 (2001)
J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1975)
G.Q. Gu, K.W. Yu, Acta Physica Sinica 40, 709 (1991)
G. Fuhr, P.I. Luzmin, Biophys. J. 50, 789 (1986)
W.M. Arnold, U. Zimmermann, Z. Naturforsch. 37c, 908 (1982)
K.L. Chan, P.R.C. Gascoyne, F.F. Becker, P. Pethig, Biochim. Biophys. Acta 1349, 182 (1997)
G.Q. Gu, K.W. Yu, J. Appl. Phys. 94, 3376 (2003)
L. Dong, G.Q. Gu, K.W. Yu, Phys. Rev. B 67, 224205 (2003)
L. Dong, M. Karttunen, K.W. Yu, Phys. Rev. E 72, 016613 (2005)
H.C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)
R. Rojas, F. Claro, R. Fuchs, Phys. Rev. B 37, 6799 (1988)
P.A. Martin, J. Eng. Math. 42, 133 (2002)
G.Q. Gu, K.W. Yu, J. Compos. Mater. 39, 127 (2005)
E.B. Wei, J.B. Song, J.W. Tian, Phys. Lett. A 319, 401 (2003)
K.W. Yu, G.Q. Gu, J.P. Huang, e-print arXiv:cond-mat/0211532
G.W. Milton, The Theory of Composites (Cambridge University Press, Cambridge, 2002), p. 12
K.W. Yu, G.Q. Gu, Phys. Lett. A 345, 448 (2005)
J.P. Huang, Mikko Karttunen, K.W. Yu, L. Dong, G.Q. Gu, Phys. Rev. E 69 051402 (2004)
J.P. Huang, K.W. Yu, J. Chem. Phys. 121, 7526 (2004)
G.Q. Gu, K.W. Yu, P. M. Hui, J. Chem. Phys. 116, 10989 (2002)
K.W. Yu, J.T.K. Wan, Comput. Phys. Commun. 129, 177 (2000)
J.P. Huang, K.W. Yu, Appl. Phys. Lett. 85, 94 (2004)
L. Dong, J.P. Huang, K.W. Yu, G.Q. Gu, J. Appl. Phys. 95, 621 (2004)
A.A. Lucas, L. Henrard, P. Lambin, Phys. Rev. B 49, 2888 (1994)