Multiplicity of solutions for a p-Schrödinger–Kirchhoff-type integro-differential equation

Juan Mayorga-Zambrano1, Josué Murillo-Tobar2,1, Abraham Macancela-Bojorque1
1Yachay Tech University, Urcuquí, Ecuador
2Université Paris-Saclay (Univ. Evry), Evry Courcouronnes, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alves, C.O., Corrêa, F.J.S.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equation of Kirchhoff type. Comput. Math. Appl. 49, 85–93 (2005). https://doi.org/10.1016/j.camwa.2005.01.008

Ambrosetti, A., Malchiodi, A.: Nonlinear Analysis and Semilinear Elliptic Problems. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/CBO9780511618260

Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1995). https://doi.org/10.1002/zamm.19930731218

Bogachev, V.I.: Measure Theory, vol. 1. Springer, Berlin (2007). https://doi.org/10.1007/978-3-540-34514-5

Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2011). https://doi.org/10.1007/978-0-387-70914-7

Drummond, P., Hillery, M.: The Quantum Theory of Nonlinear Optics. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9780511783616

Duan, L., Huang, L.: Infinitely many solutions for sublinear Schrödinger Kirchhoff type equations with general potentials. Results Math. 66, 181–197 (2014). https://doi.org/10.1007/s00025-014-0371-9

Glitzky, A., Liero, M., Nika, G.: Analysis of a hybrid model for the electro-thermal behavior of semiconductor heterostructures. J. Math. Anal. Appl. 507, 125815 (2022). https://doi.org/10.1016/j.jmaa.2021.125815

Glitzky, A., Liero, M., Nika, G.: An existence result for a class of electrothermal drift-diffusion models with Gauss-Fermi statistics for organic semiconductors. Anal. Appl. (Singap.) 19, 275–304 (2021). https://doi.org/10.1142/S0219530519500246

He, X., Zou, W.: Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 70, 1407–1414 (2009). https://doi.org/10.1016/j.na.2008.02.021

Kirchhoff, G.: Vorlesungen uber Matematische Physik, vol. 1, pp. 316–320. Mechanik, Druck Und Verlag Von GB Teubner, Leipzig (1883)

Lindqvist, P.: Notes on the Stationary $$p$$-Laplace Equation. Springer, Berlin (2017). https://doi.org/10.1007/978-3-030-14501-9

Meystre, P.: Atom Optics. Springer, New York (2001). https://doi.org/10.1063/1.1535011

Mills, D.L.: Nonlinear Optics. Springer, Berlin (1998). https://doi.org/10.1007/978-3-642-58937-9

Rabinowitz, P.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Regional Conference Series in Mathematics, vol. 65 (1986). https://doi.org/10.1090/cbms/065

Wu, X.: Existence of nontrivial solutions and high energy solutions for Schrödinger–Kirchhoff-type equations in $$\mathbb{R} ^{N}$$. Nonlinear Anal. Real World Appl. 12, 1278–1287 (2011). https://doi.org/10.1016/j.nonrwa.2010.09.023