Giải pháp Tuần hoàn Đa dạng với Chu kỳ Tối thiểu cho Hệ Đơn Giản Thứ Hai

Acta Applicandae Mathematicae - Tập 110 - Trang 181-193 - 2008
Long Yuhua1, Guo Zhiming1, Shi Haiping2
1School of Mathematics and Information Science, Guangzhou University, Guangzhou, People’s Republic of China
2Basic Courses Department, Guangdong Baiyun Institute, Guangzhou, People’s Republic of China

Tóm tắt

Bằng cách vận dụng lý thuyết Clark duality, lý thuyết minimax và lý thuyết chỉ số hình học, một số kết quả về sự tồn tại và tính đa dạng của các giải pháp không đồng bộ với chu kỳ tối thiểu được chỉ định cho hệ thống rời rạc bậc hai phụ dưới đã được thu được.

Từ khóa

#giải pháp không đồng bộ #chu kỳ tối thiểu #hệ thống rời rạc #lý thuyết minimax #lý thuyết chỉ số hình học

Tài liệu tham khảo

Agarwal, R.P.: On boundary value problems for second order discrete systems. J. Math. Ann. Appl. 20, 1–17 (1985) Agarwal, R.P.: Difference Equations and Inequalities: Theory, Methods and Applications. Marcel Dekker, New York (2000) Ahlbrandt, C.D., Peterson, A.C.: Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations. Kluwer Academic, Dordrecht (1996) Bishop, A.B.: Introduction to Discrete Linear Controls: Theory and Applications. Academic Press, New York (1975) Chen, S.: Disconjagacy, disfocality and oscillation of second order difference equations. J. Differ. Equ. 107, 383–394 (1994) Chen, S., Erbe, L.: Oscillation and nonoscillation for systems of self-adjoint second-order difference equations. SIAM J. Math. Anal. 20, 939–949 (1989) Cheng, S.S., Yan, T.C., Li, H.J.: Oscillation of second order difference equations. Funkcialaj Ekvacioj 34, 223–239 (1991) Elaydi, S.N.: An Introduction to Difference Equations. Spring, New York (1996) Fowler, R.H.: The solution of Emden’s and similar differential equations. Mon. Notes R. Astron. Soc. 91, 63–91 (1930) Guo, Z.M., Yu, J.S.: The existence of periodic and subharmonic solutions of subquadratic second order difference equations. J. Lond. Math. Soc. 68(2), 419–430 (2003) Guo, Z.M., Yu, J.S.: Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China A 46(4), 506–515 (2003) Kelley, W.G., Peterson, A.C.: Difference Equations: An Introduction with Applications. Academic Press, New York (1991) Liu, J.Q., Wang, Z.Q.: Remarks on subharmonics with minimal periods of Hamiltonian systems. Nonlinear Anal. Theory Methods Appl. 20, 803–821 (1993) Long, Y.H.: Applications of Clark duality to periodic solutions with minimal period for discrete Hamiltonian systems. J. Math. Anal. Appl. 342, 726–741 (2008) Mawin, J., Willem, M.: Critical Point Theory and Hamiltonian Systems. Springer, New York (1989) Michalek, R.: A Z p Borsk–Ulam theorem and index theory with a multiplicity results in partial differential equations. Nonlinear Anal. Theory Methods Appl. 13, 957–968 (1989) Michalek, R., Tarantello, G.: Subharmonics solutions with prescriebed minimal period for nonautonomous Hamiltonian systems. J. Differ. Equ. 72, 28–55 (1988) Michalek, R., Tarantello, G.: Subharmonics solutions with prescriebed minimal period for nonautonomous Hamiltonian systems. J. Differ. Equ. 72, 28–55 (1988) Patula, W.: Growth oscillation and comparison theorems for second order linear difference equations. SIAM J. Math. Anal. 10, 1272–1279 (1979) Wong, J.S.W.: On the generalized Emden–Fowler equation. SIAM Rev. 17(2), 339–360 (1975) Xu, Y.T., Guo, Z.M.: Applications of a Z p index theory to periodic solutions for a class of functional differential equations. J. Math. Anal. Appl. 257, 189–205 (2001) Yu, J.S., Guo, Z.M.: Boundary value problems of discrete generalized Emden–Foeler equation. Sci. China A 49(10), 1303–1314 (2006) Yu, J.S., Long, Y.H., Guo, Z.M.: Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation. J. Dyn. Differ. Equ. 16(2), 575–586 (2004) Zhou, Z., Yu, J.S., Guo, Z.M.: Periodic solutions of higher-dimensional discrete systems. Proc. R. Soc. Edinb. 134(A), 1–10 (2004)